A simplified implementation of a Geometric sequence with the values not stored internally would look like:
import collections.abc
import math
class GeomRange(collections.abc.Sequence):
    def __init__(self, a, r, start, stop=None):
        self.a = a
        self.r = r
        if stop is None:
            start, stop = 0, start
        self.k = range(start, stop, 1)
    def __getitem__(self, i):
        if isinstance(i, int):
            if i < 0:
                i += len(self)
            if i in self.k:
                return self.a * self.r ** (self.k.start + i)
            else:
                raise IndexError
        elif isinstance(i, slice):
            sliced = self.k[i]
            return type(self)(self.a, self.r, sliced.start, sliced.stop)
    def __len__(self):
        return len(self.k)
    def __contains__(self, item):
        r_k = item / self.a
        if r_k > 0:
            k = math.log2(r_k) / math.log2(self.r)
            if math.isclose(k % 1, 1.0):
                k = int(k)
        else:
            k = None
        return k in self.k
    def __iter__(self):
        item = self.a * self.r ** self.k.start
        for _ in self.k:
            yield item
            item *= self.r
    def __reversed__(self):
        item = self.a * self.r ** (self.k.stop - 1)
        for _ in reversed(self.k):
            yield item
            item //= self.r
    def index(self, item):
        r_k = item / self.a
        if r_k > 0:
            k = math.log2(r_k) / math.log2(self.r)
            if math.isclose(k % 1, 1.0):
                k = int(k)
        else:
            k = None
        return self.k.index(k)
    def count(self, item):
        if item in self:
            return 1
        else:
            raise ValueError
    def __str__(self):
        return f'Geom[{self.a}, {self.r}]-{self.k}'
    __repr__ = __str__
Note that the above code does not necessarily handle well all corner cases.
For example, it assumes a and r to be non-negative ints.
This object would behave essentially like range(), but would produce a Geometric progression:
a = GeomRange(1, 2, 8)
print(a)
# Geom[1, 2]-range(0, 8)
print(len(a))
# 8
print(list(a))
# [1, 2, 4, 8, 16, 32, 64, 128]
print(list(a))
# [1, 2, 4, 8, 16, 32, 64, 128]
print(list(reversed(a)))
# [128, 64, 32, 16, 8, 4, 2, 1]
print(a[2], a[-2])
# 4 64
print((a[:2]), (a[2:]))
# Geom[1, 2]-range(0, 2) Geom[1, 2]-range(2, 8)
print((a[:-2]), (a[-2:]))
# Geom[1, 2]-range(0, 6) Geom[1, 2]-range(6, 8)
print(list(a[:2]), list(a[2:]))
# [1, 2] [4, 8, 16, 32, 64, 128]
print(list(a[:-2]), list(a[-2:]))
# [1, 2, 4, 8, 16, 32] [64, 128]
print((a[:10]), (a[10:]))
# Geom[1, 2]-range(0, 8) Geom[1, 2]-range(8, 8)
print((a[:-10]), (a[-10:]))
# Geom[1, 2]-range(0, 0) Geom[1, 2]-range(0, 8)
print(list(a[:10]), list(a[10:]))
# [1, 2, 4, 8, 16, 32, 64, 128] []
print(list(a[:-10]), list(a[-10:]))
# [] [1, 2, 4, 8, 16, 32, 64, 128]
print(a.index(4))
# 2
print(a.count(8))
# 1
print(all((
    0 not in a,
    1 in a,
    128 in a,
    256 not in a,
    2 in a,
    3 not in a,
    1.99999999 not in a)))
# True
with O(1) operations when possible, e.g.:
%timeit 2 ** 100 in GeomRange(1, 2, 1000)
# 100000 loops, best of 3: 4.7 µs per loop
%timeit 2 ** 100 in GeomRange(1, 2, 1000000)
# 100000 loops, best of 3: 4.68 µs per loop
while still being memory efficient, e.g.:
import sys
print(sys.getsizeof(GeomRange(1, 2, 1000)))
# 56
print(sys.getsizeof(tuple(GeomRange(1, 2, 1000))))
# 8048
The speed price for all this machinery is a few percent when iterating, e.g.:
%timeit tuple(GeomRange(1, 2, 10000))
# 100 loops, best of 3: 3.47 ms per loop
%timeit tuple(geom_seq(1, 2, 10000))
# 100 loops, best of 3: 3.18 ms per loop