I am trying to One Hot Encode categorical columns in my dataset. I am using the following function:
def create_ohe(df, col):
    le = LabelEncoder()
    a = le.fit_transform(df_new[col]).reshape(-1,1)
    ohe = OneHotEncoder(sparse=False)
    column_names = [col + "_" + str(i) for i in le.classes_]
    return (pd.DataFrame(ohe.fit_transform(a), columns=column_names))
I am getting MemoryError when I call the function in this loop:
for column in categorical_columns:
    temp_df = create_ohe(df_new, column)
    temp = pd.concat([temp, temp_df], axis=1)
Error Traceback:
MemoryError                               Traceback (most recent call last)
<ipython-input-40-9b241e8bf9e6> in <module>
      1 for column in categorical_columns:
----> 2     temp_df = create_ohe(df_new, column)
      3     temp = pd.concat([temp, temp_df], axis=1)
      4 print("\nShape of final df after one hot encoding: ", temp.shape)
<ipython-input-34-1530423fdf06> in create_ohe(df, col)
      8     ohe = OneHotEncoder(sparse=False)
      9     column_names = [col + "_" + str(i) for i in le.classes_]
---> 10     return (pd.DataFrame(ohe.fit_transform(a), columns=column_names))
MemoryError: