Lets say I have the following DataFrame:
df = pd.DataFrame({'col1': [241, 123, 423], 'col2':[977, 78, np.NaN], 'col3':[76, 432, np.NaN], 'col4':[234, 321, 987]}, index=pd.date_range('2019-1-1', periods=3, freq="D")).rename_axis('Date')
which outputs:
            col1   col2   col3  col4
Date                                
2019-01-01   241  977.0   76.0   234
2019-01-02   123   78.0  432.0   321
2019-01-03   423    NaN    NaN   987
Another Dataframe, or even a Series, has the missing values for col2 and col3. How can I replace the NaN values with the values from df2?
df2 = pd.DataFrame({'col2': 111, 'col3': 222}, index=[pd.to_datetime('2019-1-3')]).rename_axis('Date')
which looks like:
            col2  col3
Date                  
2019-01-03   111   222
The final DataFrame I want should look like this:
            col1   col2   col3  col4
Date                                
2019-01-01   241  977.0   76.0   234
2019-01-02   123   78.0  432.0   321
2019-01-03   423    111    222   987
 
     
    