I am trying to fit my model on Streamlit.io app, but I am getting the above Value-Error. But it doesn't give the same error on Jupyter Notebook Please any better approach will help a lot.
 
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
File "c:\users\8470p\anaconda3\lib\site-packages\streamlit\ScriptRunner.py", line 311, in _run_script exec(code, module.__dict__)
File "C:\Users\8470p\app2.py", line 122, in  bow_transformer = CountVectorizer(analyzer=text_process).fit(messages['message'])
File "c:\users\8470p\anaconda3\lib\site-packages\sklearn\feature_extraction\text.py", line 1024, in fit self.fit_transform(raw_documents)
File "c:\users\8470p\anaconda3\lib\site-packages\sklearn\feature_extraction\text.py", line 1058, in fit_transform self.fixed_vocabulary_)
File "c:\users\8470p\anaconda3\lib\site-packages\sklearn\feature_extraction\text.py", line 962, in _count_vocab analyze = self.build_analyzer()
File "c:\users\8470p\anaconda3\lib\site-packages\sklearn\feature_extraction\text.py", line 339, in build_analyzer if self.analyzer == 'char':
File "c:\users\8470p\anaconda3\lib\site-packages\pandas\core\generic.py", line 1555, in __nonzero__ self.__class__.__name__ enter code here
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.model_selection import train_test_split
    from sklearn.pipeline import Pipeline
    from sklearn.metrics import classification_report
    from sklearn.feature_extraction.text import TfidfTransformer
    from sklearn.naive_bayes import MultinomialNB
    bow_transformer = 
    CountVectorizer(analyzer=text_process).fit(messages['message'])
    msg_train, msg_test, label_train, label_test = 
    train_test_split(messages['message'], messages['label'], test_size=0.2)
    pipeline = Pipeline([
      ('bow', CountVectorizer(analyzer=text_process)),  # strings to token 
    integer counts
    ('tfidf', TfidfTransformer()),  # integer counts to weighted TF-IDF scores
    ('classifier', MultinomialNB()),  # train on TF-IDF vectors w/ Naive Bayes 
    classifier
    ])
    NB_Clasifier = pipeline.fit(msg_train,label_train)
 
    