I have 1500 json files like:
[
  {
    "info1": {
      "name": "John",
      "age" : "50"
      "country": "USA",
    },
    "info2": {
      "id1": "129",
      "id2": "151",
      "id3": "196",
    },
    "region": [
      {
        "id": "36",
        "name": "Spook",
        "spot": "2"
      },
      {
        "id": "11",
        "name": "Ghoul",
        "spot": "6"
      },
      {
        "id": "95",
        "lat": "Devil",
        "spot": "4"
      }
    ]
  }
  {
    "info1": {
      "name": "Mark",
      "age" : "33"
      "country": "Brasil",
    },
    "info2": {
      "id1": "612",
      "id2": "221",
      "id3": "850",
    },
    "region": [
      {
        "id": "68",
        "name": "Ghost",
        "spot": "7"
      },
      {
        "id": "75",
        "name": "Spectrum",
        "spot": "2"
      },
      {
        "id": "53",
        "name": "Phantom",
        "spot": "2"
      }
    ]
  }
]
I have loaded important information from json files into the data frame and I added column with json file name. My code:
path_to_json = 'my files_directory' 
json_files = glob.glob(os.path.join(path_to_json, "*.json"))
for file_ in json_files:
    df = pd.read_json(file_)
    df = df.drop(columns=['info1', 'info2'])  # these columns is not important to me so I delete it
    df2 = pd.DataFrame(columns=['name', 'date'])
    names=[]
    dates=[]
    for x in df['region']: 
        for name in x: 
            names.append(name['name']) 
            dates.append(file_)
df2['name']=names
df2['date']=dates    
My data frame look like this:
      name           date  
0    Spook      20191111.json  
1    Ghoul      20191111.json  
2    Devil      20191111.json  
3    Ghost      20191111.json  
4    Spectrum   20191111.json  
5    Phantom    20191111.json  
And this output it's satisfying for me, but when I have 1500 json files in the folder, loading this into data frame takes ages. This probably results from using the append() function. How can I modify this code to speed up loading this json files?
Thank you in advance for your help.
