II have a serie object containing 3 columns (name, code, value) which I get from the below function:
def get_fuzz(df, w):
    s = df['Legal_Name'].apply(lambda y: fuzz.token_set_ratio(y, w))
    idx = s.idxmax()
    return {'name': df['Legal_Name'].iloc[idx], 'lei': df['LEI'].iloc[idx], 'val': s.max()}
df1['Name'].apply(lambda x: get_fuzz(df, x))
The Serie looks like this
output
0    {'name': 'MGR Farms LLC', 'lei': '984500486BBD...
1    {'name': 'RAVENOL NORGE AS', 'lei': '549300D2O...
2    {'name': 'VCC Live Group Zártkörűen Működő Rés...
I can assign the output to my dataframe with the code below.
df1.assign(search=df1['Name'].apply(lambda x: get_fuzz(df, x)))
The Dataframe that I get looks like this
    ID  Name             search
0   1   Marshalll   {'name': 'MGR Farms LLC', 'lei': '984500486BBD...
1   2   JP Morgan   {'name': 'RAVENOL NORGE AS', 'lei': '549300D2O...
Question
How can I split this column into 3 columns?
Final output wanted
    ID  Name        Name_bis            LEI             Value
0   1   Marshalll   MGR Farms LLC    984500486BBD        57
1   2   Zion        ZION INVESTMENT  549300D2O           100
 
    