So I have a Pandas DataFrame with [207684 rows x 3 columns]:
                   Row                Column         Coef
0                  obj  F0000010042600010020   552.261551
1            ARE000001  F0000010042600010020     1.000000
2       IDA00000126004  F0000010042600010020     1.000000
3             MOA26004  F0000010042600010020    60.600000
4             POL26004  F0000010042600010020     6.744780
5             FIB26004  F0000010042600010020   439.350000
6             DIS26004  F0000010042600010020  -727.200000
7            TR0001004  F0000010042600010020     0.006313
8            FR0020004  F0000010042600010020     0.007481
9           DIF0020004  F0000010042600010020 -4666.200000
10                 obj  F0000010052600010020   693.506264
11           ARE000001  F0000010052600010020     1.000000
...                ...                   ...          ...
I have to create a matrix from this data, using the information on the first 2 columns as indices and the values from the third columns as the entries in the matrix. What I thought to do at first was get the unique values on the first 2 columns, loop through them getting the values from the dataframe like that:
>>> Rows = Dados["Row"].unique()
>>> Cols = Dados["Column"].unique()
>>> ProblemM=np.zeros((len(Rows),len(Cols)))
>>> for (i,index1) in zip(Rows,tqdm_notebook(range(len(Rows)))):
...     for (j,index2) in zip(Cols,tqdm_notebook(range(len(Cols)))):
...         Data = Dados.loc[(Dados.Row==i) & (Dados.Column==j),'Coef'].values
...         ProblemM[index1,index2]=Data[0] if len(Data)>0 else None
But as expected that will take ages, as I'll have a matrix with dimensions [6813 x 21683], is there some ways to significantly improve the performance for this task?!
