I would recommend you to take a look on one of the .net classes to fully understand how to handle wait methods with CanncelationToken, I picked up SeamaphoreSlim.cs
    public bool Wait(int millisecondsTimeout, CancellationToken cancellationToken)
    {
        CheckDispose();
        // Validate input
        if (millisecondsTimeout < -1)
        {
            throw new ArgumentOutOfRangeException(
                "totalMilliSeconds", millisecondsTimeout, GetResourceString("SemaphoreSlim_Wait_TimeoutWrong"));
        }
        cancellationToken.ThrowIfCancellationRequested();
        uint startTime = 0;
        if (millisecondsTimeout != Timeout.Infinite && millisecondsTimeout > 0)
        {
            startTime = TimeoutHelper.GetTime();
        }
        bool waitSuccessful = false;
        Task<bool> asyncWaitTask = null;
        bool lockTaken = false;
        //Register for cancellation outside of the main lock.
        //NOTE: Register/deregister inside the lock can deadlock as different lock acquisition orders could
        //      occur for (1)this.m_lockObj and (2)cts.internalLock
        CancellationTokenRegistration cancellationTokenRegistration = cancellationToken.InternalRegisterWithoutEC(s_cancellationTokenCanceledEventHandler, this);
        try
        {
            // Perf: first spin wait for the count to be positive, but only up to the first planned yield.
            //       This additional amount of spinwaiting in addition
            //       to Monitor.Enter()’s spinwaiting has shown measurable perf gains in test scenarios.
            //
            SpinWait spin = new SpinWait();
            while (m_currentCount == 0 && !spin.NextSpinWillYield)
            {
                spin.SpinOnce();
            }
            // entering the lock and incrementing waiters must not suffer a thread-abort, else we cannot
            // clean up m_waitCount correctly, which may lead to deadlock due to non-woken waiters.
            try { }
            finally
            {
                Monitor.Enter(m_lockObj, ref lockTaken);
                if (lockTaken)
                {
                    m_waitCount++;
                }
            }
            // If there are any async waiters, for fairness we'll get in line behind
            // then by translating our synchronous wait into an asynchronous one that we 
            // then block on (once we've released the lock).
            if (m_asyncHead != null)
            {
                Contract.Assert(m_asyncTail != null, "tail should not be null if head isn't");
                asyncWaitTask = WaitAsync(millisecondsTimeout, cancellationToken);
            }
                // There are no async waiters, so we can proceed with normal synchronous waiting.
            else
            {
                // If the count > 0 we are good to move on.
                // If not, then wait if we were given allowed some wait duration
                OperationCanceledException oce = null;
                if (m_currentCount == 0)
                {
                    if (millisecondsTimeout == 0)
                    {
                        return false;
                    }
                    // Prepare for the main wait...
                    // wait until the count become greater than zero or the timeout is expired
                    try
                    {
                        waitSuccessful = WaitUntilCountOrTimeout(millisecondsTimeout, startTime, cancellationToken);
                    }
                    catch (OperationCanceledException e) { oce = e; }
                }
                // Now try to acquire.  We prioritize acquisition over cancellation/timeout so that we don't
                // lose any counts when there are asynchronous waiters in the mix.  Asynchronous waiters
                // defer to synchronous waiters in priority, which means that if it's possible an asynchronous
                // waiter didn't get released because a synchronous waiter was present, we need to ensure
                // that synchronous waiter succeeds so that they have a chance to release.
                Contract.Assert(!waitSuccessful || m_currentCount > 0, 
                    "If the wait was successful, there should be count available.");
                if (m_currentCount > 0)
                {
                    waitSuccessful = true;
                    m_currentCount--;
                }
                else if (oce != null)
                {
                    throw oce;
                }
                // Exposing wait handle which is lazily initialized if needed
                if (m_waitHandle != null && m_currentCount == 0)
                {
                    m_waitHandle.Reset();
                }
            }
        }
        finally
        {
            // Release the lock
            if (lockTaken)
            {
                m_waitCount--;
                Monitor.Exit(m_lockObj);
            }
            // Unregister the cancellation callback.
            cancellationTokenRegistration.Dispose();
        }
        // If we had to fall back to asynchronous waiting, block on it
        // here now that we've released the lock, and return its
        // result when available.  Otherwise, this was a synchronous
        // wait, and whether we successfully acquired the semaphore is
        // stored in waitSuccessful.
        return (asyncWaitTask != null) ? asyncWaitTask.GetAwaiter().GetResult() : waitSuccessful;
    }
You can also view the whole class here, https://referencesource.microsoft.com/#mscorlib/system/threading/SemaphoreSlim.cs,6095d9030263f169