I have a data set as I've shown below:
df <- tribble(
  ~id,  ~price, ~number_of_book,        
  "1",    10,         3,        
  "1",     5,         1,         
  "2",     7,         4,
  "2",     6,         2, 
  "2",     3,         4,
  "3",     4,         1,
  "4",     5,         1,
  "4",     6,         1,
  "5",     1,         2,
  "5",     9,         3,
)
As you see in the data set, there are 3 books which cost 10 dollar for each book if id is "1" and 1 book that costs 5 dollar. Basically, I want to see the share (%) the number of books for each price bin. Here is my desired data set:
df <- tribble(
  ~id,    ~less_than_three,   ~three-five,  ~five-six, ~more_than_six,     
  "1",          "0%",              "25%",     "0%",         "75%",
  "2",          "0%",              "40%",     "20%",        "40%",
  "3",          "0%",              "100%",    "0%",         "0%",  
  "4",          "0%",              "50%",     "50%",        "0%",
  "5",          "40%",             "0%",      "0%",         "60%",
)
Now, I clustered the prices first. To do this, I run the below code:
out <- cut(df$price, breaks = c(0, 3, 5, 6, 10),
           labels = c("<3","3-5","5-6", ">6")) 
out = table(out) / sum(table(out)) 
But unfortunately, I could not go further because of lack of coding knowledge. Would you help me to get the desired data?
 
     
    