It was a bit challenging to determine what you needed, but this might come close to your ideal solution.
import pandas as pd
from numpy import NaN
# Assuming that these dictionaries accurately reflect
# your DataFrames's contents, then the 
# following might work:
_df = {
    "c1":  [1.0, 3.0, 5.0, 7.0],
    "c2":  [1.0, 3.0, 5.0, 7.0],
    "c3":  [1.0, 3.0, 5.0, 7.0],
    "c4":  [1.0, 3.0, 5.0, 7.0],
    "Nº Línea Cliente": [
        "Hay algo",
        "Hay algo",
        "Hay algo",
        NaN],
    "c6":  [1.0, 3.0, 5.0, 7.0],
    "c7":  [1.0, 3.0, 5.0, 7.0],
    "c8":  [1.0, 3.0, 5.0, 7.0],
    "c9":  [1.0, 3.0, 5.0, 7.0],
    "c10": [1.0, 3.0, 5.0, 7.0],
}
Campo_a_Validar = [
        "Nº Línea Cliente"
        for campo in range(4)]
Campo_a_Validar.append("TIPO DE GARANTIA 1")
_dfP1 = {
    "ID_Val": [1,2,3,4,5],
    "Tipo_Validación": [1, 2, 3, 4, 1],
    "Campo_a_Validar": Campo_a_Validar,
}
# Initializing the DataFrames
df = pd.DataFrame(_df)
dfP1 = pd.DataFrame(_dfP1)
def analizar_para_nulos(_df_, _dfP1_):
    try:
        contar_nulos  = lambda DF, ColName: DF.groupby([ColName])[ColName].nunique()
        nulos_de_df   = contar_nulos(_df_, "Nº Línea Cliente")
        nulos_de_dfP1 = contar_nulos(_dfP1_, "Campo_a_Validar") 
        assert(
            nulos_de_df.values[0] == nulos_de_dfP1.values[0]
        )
        num_nulos = nulos_de_df
        return num_nulos.values[0]
    except AssertionError:
        return 0
# Check whether the number of unique rows is
# equal to the number of unique rows in
# the other table
is_coincidence = analizar_para_nulos(df, dfP1)
if is_coincidence:
    base = [is_coincidence]
    base.extend([""
        for position in range(len(df.c1) - 1)])
    num_columns = len(df.T)
    df.insert(
        loc=num_columns,
        column="Numeros_de_Nulos",
        value=base
    )
    print(df)
else:
    print(df)
Output:
    c1   c2   c3   c4 Nº Línea Cliente   c6   c7   c8   c9  c10 Numeros_de_Nulos
0  1.0  1.0  1.0  1.0         Hay algo  1.0  1.0  1.0  1.0  1.0                1
1  3.0  3.0  3.0  3.0         Hay algo  3.0  3.0  3.0  3.0  3.0                 
2  5.0  5.0  5.0  5.0         Hay algo  5.0  5.0  5.0  5.0  5.0                 
3  7.0  7.0  7.0  7.0              NaN  7.0  7.0  7.0  7.0  7.0