so i'm gonna make a website about image classification with user input upload image and and the image will be proccessed in different python file, unfortunately i stuck with this problem over a week
AttributeError: 'Request' object has no attribute 'file'
this is the full code of Flask
app.py
from flask import Flask, redirect, render_template, request
from werkzeug.utils import secure_filename
import os
from Testing import predict
app = Flask(__name__)
app.config["ALLOWED_EXTENSIONS"] = ["JPEG", "JPG", "PNG", "GIF"]
app.config['UPLOAD_FOLDER'] = 'uploads'
def allowed_image(filename):
    if not "." in filename:
        return False
    ext = filename.rsplit(".", 1)[1]
    if ext.upper() in app.config["ALLOWED_EXTENSIONS"]:
        return True
    else:
        return False
@app.route('/predict_image/', methods=['GET', 'POST'])
def render_message():
    # Loading CNN model
    if request.method == 'POST':
        file = request.file['image_retina']
        if 'file' not in request.files:
            return render_template('upload.html')
        if file.filename == '':
            return render_template('upload.html')
        if file and allowed_image(file.filename):
            filename = secure_filename(file.filename)
            file.save(os.path.join(app.config['UPLOAD_FOLDER'],  filename))
    predict()
    return render_template('upload.html')
and this is the code where the image will be proccessed
Testing.py 
import os
import numpy as np
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
from keras.models import Sequential, load_model
import time
start = time.time()
# Define Path
test_path = 'data/test_image'
# Define image parameters
img_width, img_height = 150, 150
# Prediction Function
def predict():
    model_path = './models/model.h5'
    model_weights_path = './models/weights.h5'
    model = load_model(model_path)
    model.load_weights(model_weights_path)
    x = load_img(test_path, target_size=(img_width, img_height))
    x = img_to_array(x)
    x = np.expand_dims(x, axis=0)
    array = model.predict(x)
    result = array[0]
    # print(result)
    answer = np.argmax(result)
     if answer == 0:
         print("Predicted: Drusen")
     elif answer == 1:
         print("Predicted: Normal")
    return answer
# Calculate execution time
end = time.time()
dur = end-start
if dur < 60:
    print("Execution Time:", dur, "seconds")
elif dur > 60 and dur < 3600:
    dur = dur/60
    print("Execution Time:", dur, "minutes")
else:
    dur = dur/(60*60)
    print("Execution Time:", dur, "hours")
upload.html
<html lang="en">
<head>
    <meta charset="UTF-8">
    <title>Upload Gambar</title>
</head>
<body>
    <h1>Upload an Image</h1><br>
    <form method="post" enctype="multipart/form-data">
        <input type="file" id="image_retina" name="image_retina">
        <label for="image_retina">Select image...</label><br>
        <button type="submit">Upload</button><br>
        <!-- <a href="/predict_image">bercanda anda</a> -->
    </form>
    {% if message %}
    <p>{{message}}</p><br>
    {% if data.shape[0] > 0 %}
    <!-- {{ data.reset_index(drop = True).to_html(classes="table table-striped") | safe}} -->
    {% endif %}
    <p><img src="{{image_retina}}" style='width:500px' /><br>
        {% endif %}
</body>
</html>
thank you so much!!
 
     
    