The below code works in Scala-Spark.
scala> val ar = Array("oracle", "java")
ar: Array[String] = Array(oracle, java)
scala> df.withColumn("tags", lit(ar)).show(false)
+------+---+----------+----------+--------------+
|name  |age|role      |experience|tags          |
+------+---+----------+----------+--------------+
|John  |25 |Developer |2.56      |[oracle, java]|
|Scott |30 |Tester    |5.2       |[oracle, java]|
|Jim   |28 |DBA       |3.0       |[oracle, java]|
|Mike  |35 |Consultant|10.0      |[oracle, java]|
|Daniel|26 |Developer |3.2       |[oracle, java]|
|Paul  |29 |Tester    |3.6       |[oracle, java]|
|Peter |30 |Developer |6.5       |[oracle, java]|
+------+---+----------+----------+--------------+
How do I get the same behavior in PySpark? I tried the below, but it doesn't work and throws Java error.
from pyspark.sql.types import *
tag = ["oracle", "java"]
df2.withColumn("tags", lit(tag)).show()
: java.lang.RuntimeException: Unsupported literal type class java.util.ArrayList [oracle, java]
 
     
     
    