How can I add a new column to a dataframe with the sum of values from a nested dataframe, without losing any of the other columns and nested data using pandas?
Specifically, I want to create a new column total_cost with the sum of all nested dataframes for a row.  
I managed to create the following dataframe using a series of groupby and apply:
  user_id   description                                       unit_summary
0     111  xxx  [{'total_period_cost': 100, 'unit_id': 'xxx', ...
1     222  xxx  [{'total_period_cost': 100, 'unit_id': 'yyy', ...
I'm trying to add the column total_cost which is the sum of total_period_cost of each nested dataframe (grouped by user_id).  How can I achieve the following dataframe?
  user_id   description   total_cost                          unit_summary
0     111  xxx  300  [{'total_period_cost': 100, 'unit_id': 'xxx', ...
1     222  xxx  100  [{'total_period_cost': 100, 'unit_id': 'yyy', ...
My code:
import pandas as pd
series = [{
    "user_id":"111", 
    "description": "xxx",
    "unit_summary":[
        {
        "total_period_cost":100,
        "unit_id":"xxx",
        "cost_per_unit":50,
        "total_period_usage":2
        },
        {
        "total_period_cost":200,
        "unit_id":"yyy",
        "cost_per_unit":25,
        "total_period_usage": 8
        }
    ]
},
{
    "user_id":"222",
    "description": "xxx",
    "unit_summary":[
        {
            "total_period_cost":100,
            "unit_id":"yyy",
            "cost_per_unit":25,
            "total_period_usage": 4
        }
    ]
}]
df = pd.DataFrame(series)
print(df)
print(df.to_dict(orient='records'))
Here is an example of the groupby..apply code I used to achieve the series JSON object:
import pandas as pd
series = [
    {"user_id":"111", "unit_id":"xxx","cost_per_unit":50, "total_period_usage": 1},
    {"user_id":"111", "unit_id":"xxx","cost_per_unit":50, "total_period_usage": 1},
    {"user_id":"111", "unit_id":"yyy","cost_per_unit":25, "total_period_usage": 8},
    {"user_id":"222", "unit_id":"yyy","cost_per_unit":25, "total_period_usage": 3},
    {"user_id":"222", "unit_id":"yyy","cost_per_unit":25, "total_period_usage": 1}
]
df = pd.DataFrame(series)
sumc = (
    df.groupby(['user_id', 'unit_id', 'cost_per_unit'], as_index=False)
        .agg({'total_period_usage': 'sum'})
)
sumc['total_period_cost'] = sumc.total_period_usage * sumc.cost_per_unit
sumc = (
    sumc.groupby(['user_id'])
        .apply(lambda x: x[['total_period_cost', 'unit_id', 'cost_per_unit', 'total_period_usage']].to_dict('r'))
        .reset_index()
)
sumc = sumc.rename(columns={0:'unit_summary'})
sumc['description'] = 'xxx'
print(sumc)
print(sumc.to_dict(orient='records'))
Solved it by adding the following from the answer by anky_91:
def myf(x):
    return pd.DataFrame(x).loc[:,'total_period_cost'].sum()
# Sum all server sumbscriptions total_period_cost
sumc['total_period_cost'] = sumc['unit_summary'].apply(myf)
 
    