I have a dataframe that holds a number of NoneType values and I would like to drop all columns where all the row values AND the header is None. I am struggling to find a way to do this. In the MWE below I have managed to either drop all columns where all the rows are None OR drop all columns where the header is None.
from __future__ import annotations
import pandas as pd
d = [[1, 2, None, None, None], [4, 5, None, None, 7]]
cols = ['a', 'b', 'c', None, None]
df = pd.DataFrame(data=d, columns=cols)
print("Original: \n", df)
#Original: 
#    a  b     c   NaN  NaN
#0  1  2  None  None  NaN
#1  4  5  None  None  7.0
print("\nDropped how = all: \n", df.dropna(axis=1, how="all"))    # Drops column 'c'
#Dropped how = all: 
#    a  b  NaN
#0  1  2  NaN
#1  4  5  7.0
print("\nDropped None columns: \n", df[df.columns.dropna()])
#Dropped None columns: 
#    a  b     c
#0  1  2  None
#1  4  5  None
How can I drop only the columns I want to drop and get this?
#Wanted: 
#    a  b     c  NaN
#0  1  2  None   NaN
#1  4  5  None   7.0
 
     
     
    