Related: Selecting with complex criteria from pandas.DataFrame
I have some DataFrame:
df = pd.DataFrame({'name': ['apple1', 'apple2', 'apple3', 'apple4', 'orange1', 'orange2', 'orange3', 'orange4'], 
                   'A': [0, 0, 0, 0, 0, 0 ,0, 0], 
                  'B': [0.10, -0.15, 0.25, -0.55, 0.50, -0.51, 0.70, 0], 
                  'C': [0, 0, 0.25, -0.55, 0.50, -0.51, 0.70, 0.90],
                  'D': [0.10, -0.15, 0.25, 0, 0.50, -0.51, 0.70, 0.90]})
df
name    A   B   C   D
0   apple1  0   0.10    0.00    0.10
1   apple2  0   -0.15   0.00    -0.15
2   apple3  0   0.25    0.25    0.25
3   apple4  0   -0.55   -0.55   0.00
4   orange1 0   0.50    0.50    0.50
5   orange2 0   -0.51   -0.51   -0.51
6   orange3 0   0.70    0.70    0.70
7   orange4 0   0.00    0.90    0.90
Now let's say I want to select all the rows with values less than 0.25 in A, B, C, and D:
df[(df['A'] < 0.25) & 
  (df['B'] < 0.25) &
  (df['C'] < 0.25) &
  (df['D'] < 0.25)]
    name    A   B   C   D
0   apple1  0   0.10    0.00    0.10
1   apple2  0   -0.15   0.00    -0.15
3   apple4  0   -0.55   -0.55   0.00
5   orange2 0   -0.51   -0.51   -0.51
Great, but can I achieve the same thing using a list of columns as input?
Imagine that I wanted to filter on 100 columns instead of 4.