instance Monad ((->) r) where
return x = \_ -> x
h >>= f = \w -> f (h w) w
import Control.Monad.Instances
addStuff :: Int -> Int
addStuff = do
a <- (*2)
b <- (+10)
return (a+b)
I'm trying to understand this monad by unwiding the do notation, because I think the do notation hides what happens.
If I understood correctly, this is what happens:
(*2) >>= (\a -> (+10) >>= (\b -> return (a+b)))
Now, if we take the rule for >>=, we must understand (*2) as h and (\a -> (+10) >>= (\b -> return (a+b))) as f. Applying h to w is easy, let's just say it is 2w (I don't know if 2w is valid in haskell but just for reasoning lets keep it this way. Now we have to apply f to h w or 2w. Well, f simply returns (+10) >>= (\b -> return (a+b)) for an specific a, which is 2w in our case, so f (hw) is (+10) >>= (\b -> return (2w+b)). We must first get what happens to (+10) >>= (\b -> return (2w + b)) before finally applying it to w.
Now we reidentify (+10) >>= (\b -> return (2w + b)) with our rule, so h is +10 and f is (\b -> return (2w + b)). Let's first do h w. We get w + 10. Now we need to apply f to h w. We get (return (2w + w + 10)).
So (return (2w + w + 10)) is what we need to apply to w in the first >>= that we were tyring to uwind. But I'm totally lost and I don't know what happened.
Am I thinking in the rigth way? This is so confusing. Is there a better way to think of it?