I have 3 pandas dataframes with a structure similar to:
pandas1:
date    star    col1    col2    
2019-01-30T00:32:18.128 tau_Cet 12  25
2019-01-30T00:34:05.525 tau_Cet 23  466
2019-01-03T03:54:59.886 HD_41248    344 997
2019-01-06T03:54:25.886 51_Peg  353 458
pandas2:
date    star    col3    col4    
2019-01-30T00:32:18.128 tau_Cet 1   2
2019-01-30T00:34:05.525 tau_Cet 2   4
2019-01-03T03:54:59.886 HD_41248    34  99
2019-01-06T03:54:25.886 51_Peg  33  45
pandas3:
date    star    col5    col 4   
2019-01-30T00:32:18.128 tau_Cet 4   2
2019-01-30T00:34:05.525 tau_Cet 5   4
2019-01-03T03:54:59.886 HD_41248    3   99
2019-01-06T03:54:25.886 51_Peg  333 45
How can I merge them all on the date field?
Some properties:
- the data to construct each data frames is read from individual tab separated files 
- the - datefield will be unique to each line on each pandas, an d will be the linking key between all parameters;
- the data in columns - col1-5might be from different types (string, float, date, etc)
- columns - col1-5might or not have the same title. If the title is the same, the table value will also be the same.
the expected final result:
pandasMerged
date    star    col1    col2    col3    col4    col5
2019-01-30T00:32:18.128 tau_Cet     12  25  1   2   4
2019-01-30T00:34:05.525 tau_Cet     23  466 2   4   5
2019-01-03T03:54:59.886 HD_41248    344 997 34  99  3
2019-01-06T03:54:25.886 51_Peg      353 458 33  45  333
Any ideas/suggestions?
Thanks Jorge
 
    