I am trying to apply a function to a single column of my dataframe (specifically, normalization).
The dataframe looks like this:
     Euclidian        H         N       Volume
222   0.012288  0.00518  0.011143   85203000.0
99    1.296833 -0.80266  1.018583   17519400.0
98    1.618482 -0.60979  1.499213   16263900.0
211   2.237388  0.38073 -2.204757   38375400.0
175   2.313548  0.35656 -2.285907   66974200.0
102   3.319342  3.01295 -1.392897   33201000.0
7     3.424589 -0.31313  3.410243   97924700.0
64    3.720370 -0.03526  3.720203  116514000.0
125   3.995138  0.27396  3.985733   80526200.0
210   4.999969  0.46453  4.978343   70612100.0
The dataframe is named 'discrepancies', and my code is as such:
max = discrepancies['Volume'].max()
discrepancies['Volume'].apply(lambda x: x/max)
return discrepancies
But the column values do not change. I cannot find anywhere in the documentation to apply to single columns, they only talk about applying to all columns or all rows:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html
Thank you
 
     
     
    