Working with a subset of your data for eg.
df_data = [[888888, 3, 0, 0],
 [677767, 0, 2, 1],
 [212341212, 0, 0, 0],
 [141414141414, 0, 0, 0],
 [1112224, 0, 0, 0]]
# Creating the data
df = pd.DataFrame(data=data, columns=['Actual_Data', '8,8', '6,6', '7,7'], dtype=np.float64)
# Which looks like
#     Actual_Data  8,8  6,6  7,7
# 0  8.888880e+05  3.0  0.0  0.0
# 1  6.777670e+05  0.0  2.0  1.0
# 2  2.123412e+08  0.0  0.0  0.0
# 3  1.414141e+11  0.0  0.0  0.0
# 4  1.112224e+06  0.0  0.0  0.0
# Computing the distance matrix
dist_matrix = df.apply(lambda row: [np.linalg.norm(row.values - df.loc[[_id], :].values, 2) for _id in df.index.values], axis=1)
# Which looks like
# 0     [0.0, 211121.00003315636, 211452324.0, 141413252526.0, 223336.000020149]
# 1    [211121.00003315636, 0.0, 211663445.0, 141413463647.0, 434457.0000057543]
# 2                 [211452324.0, 211663445.0, 0.0, 141201800202.0, 211228988.0]
# 3        [141413252526.0, 141413463647.0, 141201800202.0, 0.0, 141413029190.0]
# 4      [223336.000020149, 434457.0000057543, 211228988.0, 141413029190.0, 0.0]
# Reformatting the above into readable format
dist_matrix = pd.DataFrame(
  data=dist_matrix.values.tolist(), 
  columns=df.index.tolist(), 
  index=df.index.tolist())
# Which gives you
#               0             1             2             3             4
# 0  0.000000e+00  2.111210e+05  2.114523e+08  1.414133e+11  2.233360e+05
# 1  2.111210e+05  0.000000e+00  2.116634e+08  1.414135e+11  4.344570e+05
# 2  2.114523e+08  2.116634e+08  0.000000e+00  1.412018e+11  2.112290e+08
# 3  1.414133e+11  1.414135e+11  1.412018e+11  0.000000e+00  1.414130e+11
# 4  2.233360e+05  4.344570e+05  2.112290e+08  1.414130e+11  0.000000e+00
Update
as pointed out in the comments the issue is memory overflow so we have to operate the problem in batches.
# Collecting the data
# df = ....
# Set this number to a lower value if you get the same `memory` errors.
batch = 200 # #'s of row's / user's used to compute the matrix
# To be conservative, let's write the intermediate results to file type.
dffname = []
for ifile,_slice in enumerate(np.array_split(range(df.shape[0]), batch)):
  # Let's compute distance for `batch` #'s of points in data frame
  tmp_df = df.iloc[_slice, :].apply(lambda row: [np.linalg.norm(row.values - df.loc[[_id], :].values, 2) for _id in df.index.values], axis=1)
  tmp_df = pd.DataFrame(tmp_df.values.tolist(), index=df.index.values[_slice], columns=df.index.values)
  # You can change it from csv to any other files
  tmp_df.to_csv(f"{ifile+1}.csv")
  dffname.append(f"{ifile+1}.csv")
# Reading back the dataFrames
dflist = []
for f in dffname:
  dflist.append(pd.read_csv(f, dtype=np.float64, index_col=0))
res = pd.concat(dflist)