If the variables contain only 0 or 1, then the following could be used:
with(data_tot,
     rowSums(cbind(X5_A_01_d_Heart.Disease, 
                   X5_A_01_e_Stroke,
                   X5_A_01_f_Chronic.Kidney.Disease))
)
Edit:
And if they are coded as 1 (yes) and 2 (no), plus if other risk factors such as blood pressure and cholesterol level are to be included, AND there are no missing values in these risk factor variables, then you'll can use something similar to the following:
data_tot %>%
  mutate(CVD_Risk.Factors=
           (Heart == 1) + 
           (Stroke == 1) + 
           (CKD == 1) +
           (Systolic_BP  >= 130) + (Diastolic_BP >= 80) +
           (Cholesterol > 150))
  Heart Stroke CKD Systolic_BP Diastolic_BP Cholesterol CVD_Risk.Factors
1     1      1   2         118           90         200                4
2     2      1   2         125           65         150                1
3     2      1   1         133           95         190                5
4     1      1   2         120           87         250                4
5     2      2   2         155          110          NA               NA
6     2      2   2         130          105         140                2
You can see that if there are any missing values, then this would not work. One solution is to use rowwise and then sum.
data_tot %>%
  rowwise() %>%  # This tells R to apply a function by the rows of the selected inputs
  mutate(CVD_Risk.Factors=sum(  # This function has an "na.rm" argument
           (Heart == 1), 
           (Stroke == 1), 
           (CKD == 1),
           (Systolic_BP  >= 130), (Diastolic_BP >= 80),
           (Cholesterol > 150), na.rm=TRUE))  # Omit NA in the summations
# A tibble: 6 x 7
  Heart Stroke   CKD Systolic_BP Diastolic_BP Cholesterol CVD_Risk.Factors
  <dbl>  <dbl> <dbl>       <dbl>        <dbl>       <dbl>            <int>
1     1      1     2         118           90         200                4
2     2      1     2         125           65         150                1
3     2      1     1         133           95         190                5
4     1      1     2         120           87         250                4
5     2      2     2         155          110          NA                2 # not NA
6     2      2     2         130          105         140                2
Data:
data_tot <- data.frame(Heart=c(1,2,2,1,2,2),
                       Stroke=c(1,1,1,1,2,2),
                       CKD=c(2,2,1,2,2,2),
                       Systolic_BP=c(118,125,133,120,155,130),
                       Diastolic_BP=c(90,65,95,87,110,105),
                       Cholesterol=c(200,150,190,250,NA,140))