I tried to merge the two columns begin and end to Flag and Timestamp with this piece of code:
print(df_DisponibilityAlarm.shape)
df_DisponibilityAlarm = (df_DisponibilityAlarm.stack()
 .rename_axis([None, 'Flag'])
 .reset_index(level=1, name='Timestamp'))
print(df_DisponibilityAlarm.shape)
The result is :
                         begin                          end
0                          NaN  2019-10-21  07:48:28.272688
1                          NaN  2019-10-21  07:48:28.449916
2  2019-10-21  07:48:26.740378                          NaN
3  2019-10-21  07:48:26.923764                          NaN
4                          NaN  2019-10-21  07:48:41.689466
5  2019-10-21  07:48:37.306045                          NaN
6                          NaN  2019-10-21  07:58:00.774449
7  2019-10-21  07:57:59.223986                          NaN
8                          NaN  2019-10-21  08:32:37.004455
9  2019-10-21  08:32:35.755252                          NaN
(13129, 2)
(13140, 2)
    Flag                    Timestamp
0    end  2019-10-21  07:48:28.272688
1    end  2019-10-21  07:48:28.449916
2  begin  2019-10-21  07:48:26.740378
3  begin  2019-10-21  07:48:26.923764
4    end  2019-10-21  07:48:41.689466
5  begin  2019-10-21  07:48:37.306045
6    end  2019-10-21  07:58:00.774449
7  begin  2019-10-21  07:57:59.223986
8    end  2019-10-21  08:32:37.004455
9  begin  2019-10-21  08:32:35.755252
It works ! But when I looked closely, I see when I use "stack()" the number of the rows increase... I don't understand why, can you explain me please ? I need this to validate my starting hypothesis.
 
    