We can speed this up (and make it more readable).
Fake data:
set.seed(42)
mtx <- matrix(rnorm(200), ncol=10)
mtx[1:4,1:3]
#            [,1]       [,2]       [,3]
# [1,]  1.3709584 -0.3066386  0.2059986
# [2,] -0.5646982 -1.7813084 -0.3610573
# [3,]  0.3631284 -0.1719174  0.7581632
# [4,]  0.6328626  1.2146747 -0.7267048
We can calculate the row-wise mean and standard deviation with:
rowSigma <- apply(mtx, 1, sd, na.rm = TRUE)
rowMu <- rowMeans(mtx, na.rm = TRUE)
(I'm inferring na.rm=TRUE here ... though it might not be relevant for your data.)
From here, know that basic matrix-wise math (not linear algebra ops) is typically column-wise. To demonstrate/prove this,
m <- matrix(1:9, nrow = 3)
m
#      [,1] [,2] [,3]
# [1,]    1    4    7
# [2,]    2    5    8
# [3,]    3    6    9
m + 1:3
#      [,1] [,2] [,3]
# [1,]    2    5    8
# [2,]    4    7   10
# [3,]    6    9   12
With that confidence, we can now simply do
(mtx - rowMu) / rowSigma
#         [,1]  [,2]    [,3]    [,4]   [,5]    [,6]   [,7]  [,8]  [,9]  [,10]
#  [1,]  1.259 -0.55  0.0051 -0.6119  1.412  1.0760 -1.824 -0.31 -0.41 -0.054
#  [2,] -0.049 -1.48  0.1907  0.8327  0.918  1.8429 -1.113 -0.43 -0.64 -0.071
#  [3,]  0.543 -0.49  1.3088  0.9670  0.011 -2.1048  0.081 -1.02  0.16  0.554
#  [4,]  0.336  0.95 -1.1044  1.1492 -0.462  1.6248 -1.391 -0.37 -0.72 -0.022
#  [5,]  0.604  2.16 -1.2403 -0.5734 -1.059 -0.5104  0.181 -0.25  0.80 -0.107
#  [6,] -0.426 -0.79  0.1849  1.1712  0.388 -0.1863 -0.792  0.96  1.32 -1.821
#  [7,]  2.137 -0.17 -0.8968  0.6015 -0.121 -0.3886 -0.639 -0.47 -1.13  1.078
#  [8,]  0.017 -1.49  1.4082  1.0414 -0.063 -0.0085 -1.729 -0.29  0.51  0.603
#  [9,]  1.828  0.19 -0.7497  0.6731  0.686 -0.0977 -1.584  0.44 -0.21 -1.176
# [10,] -0.078 -0.76  0.7643  0.8408  0.959  0.1352  0.206 -1.24  1.05 -1.874
# [11,]  1.416  0.23  0.0434 -1.8632  1.538 -0.4413  0.387 -0.46 -0.73 -0.120
# [12,]  2.145  0.65 -0.7603 -0.1039 -0.469  0.0837 -0.485 -1.49  0.77 -0.345
# [13,] -1.427  0.79  1.2895  0.4169  0.442 -0.5993 -0.154  0.92 -1.75  0.077
# [14,] -0.358 -0.68  0.5283 -1.0064  1.248 -0.5745  0.990 -0.35  1.53 -1.334
# [15,]  0.068  0.74  0.3022 -0.3631 -0.960 -1.5391  1.722 -0.28  1.12 -0.801
# [16,]  0.993 -1.54  0.6062  0.9338 -0.618 -0.1029 -0.872 -1.02  0.15  1.477
# [17,] -0.055 -0.73  1.2414  1.3609 -1.195 -0.3619  0.170  0.32 -1.62  0.871
# [18,] -1.765 -0.56  0.0652  0.3143 -0.967  1.8055  0.806 -0.53  0.43  0.396
# [19,] -1.057 -1.04 -1.4293 -0.0093  0.642 -0.3303  0.271  0.23  0.91  1.811
# [20,]  1.498 -0.33  0.0227 -1.9499  0.547 -0.1876 -0.458  1.45 -0.39 -0.200
where each value is the z-score of the original data on a per-row basis.
(mtx[1,1] - rowMu[1]) / rowSigma[1]
# [1] 1.26
(mtx[2,3] - rowMu[2]) / rowSigma[2]
# [1] 0.191