setpgid POSIX C process group minimal example
It might be easier to understand with a minimal runnable example of the underlying API.
This illustrates how the signal does get sent to the child, if the child didn't change its process group with setpgid.
main.c
#define _XOPEN_SOURCE 700
#include <assert.h>
#include <signal.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
volatile sig_atomic_t is_child = 0;
void signal_handler(int sig) {
    char parent_str[] = "sigint parent\n";
    char child_str[] = "sigint child\n";
    signal(sig, signal_handler);
    if (sig == SIGINT) {
        if (is_child) {
            write(STDOUT_FILENO, child_str, sizeof(child_str) - 1);
        } else {
            write(STDOUT_FILENO, parent_str, sizeof(parent_str) - 1);
        }
    }
}
int main(int argc, char **argv) {
    pid_t pid, pgid;
    (void)argv;
    signal(SIGINT, signal_handler);
    signal(SIGUSR1, signal_handler);
    pid = fork();
    assert(pid != -1);
    if (pid == 0) {
        is_child = 1;
        if (argc > 1) {
            /* Change the pgid.
             * The new one is guaranteed to be different than the previous, which was equal to the parent's,
             * because `man setpgid` says:
             * > the child has its own unique process ID, and this PID does not match
             * > the ID of any existing process group (setpgid(2)) or session.
             */
            setpgid(0, 0);
        }
        printf("child pid, pgid = %ju, %ju\n", (uintmax_t)getpid(), (uintmax_t)getpgid(0));
        assert(kill(getppid(), SIGUSR1) == 0);
        while (1);
        exit(EXIT_SUCCESS);
    }
    /* Wait until the child sends a SIGUSR1. */
    pause();
    pgid = getpgid(0);
    printf("parent pid, pgid = %ju, %ju\n", (uintmax_t)getpid(), (uintmax_t)pgid);
    /* man kill explains that negative first argument means to send a signal to a process group. */
    kill(-pgid, SIGINT);
    while (1);
}
GitHub upstream.
Compile with:
gcc -ggdb3 -O0 -std=c99 -Wall -Wextra -Wpedantic -o setpgid setpgid.c
Run without setpgid
Without any CLI arguments, setpgid is not done:
./setpgid
Possible outcome:
child pid, pgid = 28250, 28249
parent pid, pgid = 28249, 28249
sigint parent
sigint child
and the program hangs.
As we can see, the pgid of both processes is the same, as it gets inherited across fork.
Then whenever you hit Ctrl+C it outputs again:
sigint parent
sigint child
This shows how:
- to send a signal to an entire process group with kill(-pgid, SIGINT)
- Ctrl+C on the terminal sends a kill to the entire process group by default
Quit the program by sending a different signal to both processes, e.g. SIGQUIT with Ctrl+\.
Run with setpgid
If you run with an argument, e.g.:
./setpgid 1
then the child changes its pgid, and now only a single sigint gets printed every time from the parent only:
child pid, pgid = 16470, 16470
parent pid, pgid = 16469, 16469
sigint parent
And now, whenever you hit Ctrl+C only the parent receives the signal as well:
sigint parent
You can still kill the parent as before with a SIGQUIT (Ctrl+\) however the child now has a different PGID, and does not receive that signal! This can seen from:
ps aux | grep setpgid
You will have to kill it explicitly with:
kill -9 16470
This makes it clear why signal groups exist: otherwise we would get a bunch of processes left over to be cleaned manually all the time.
Tested on Ubuntu 18.04.