I have a large dataframe (300k + rows) based on animals positions (GPS).
Something like this:
idAnimal    date        elevation   sex   Distance  park     Presence
animal1     01-09-2018  2376        M     678       park1    1
animal1     01-09-2018  2402        M     1023      park1    1
animal1     01-09-2018  2366        M     933       park1    1
animal1     02-09-2018  2402        M     239       park1    1
animal1     02-09-2018  2428        M     423       park1    1
animal1     02-09-2018  2376        M     817       park1    1
animal1     02-09-2018  2354        M     1073      park1    1
animal1     03-09-2018  2337        M     210       park1    1
animal1     03-09-2018  2334        M     967       park1    1
animal1     03-09-2018  2406        M     242       park1    1
animal2     04-09-2018  2231        F     547       park1    0
animal2     04-09-2018  2343        F     506       park1    0
animal2     04-09-2018  2306        F     1190      park1    0
animal2     04-09-2018  2177        F     1219      park1    0
animal2     05-09-2018  2206        F     271       park1    0
animal2     05-09-2018  2318        F     142       park1    0
animal3     05-09-2018  2324        F     263       park2    1
animal3     05-09-2018  2259        F     996       park2    1
animal3     06-09-2018  2396        F     54        park2    1
animal3     06-09-2018  2436        F     1129      park2    1
animal3     06-09-2018  2380        F     811       park2    1
I created a subset in order to consider one observation per day per animal (to avoid temporal autocorrelation)
data%>% group_by (idAnimal, date)%>% sample_n (size = 1)
What I want to do is to create n subsets (let's say 100) with the condition above (one observation per day per animal) and then insert these 100 subsets in a binomial mixed model. All this to use up all my data, not only a part.
What worries me most is how to run such a model with 100 dataframes keeping together the estimates:
glmer (Presence~ Distance * sex  + elevation* sex + (1 |park), family = binomial, data = data)
Thank you for any help.
 
    