I'm a python beginner, so I'm practicing some data analysis using pandas in a dataframe with a list of restaurants with a Michelin star (restaurants_df).
When I show, for example, the first 5 rows I notice that in the "price" column (object type) of row 4 I have a blank value:
In [ ]: restaurants_df.head()
Out[ ]:
    name            year    latitude    longitude     city        region    zipCode   cuisine           price
0   Kilian Stuba    2019    47.348580   10.17114   Kleinwalsertal Austria    87568  Creative              $
1   Pfefferschiff   2019    47.837870   13.07917    Hallwang      Austria    5300   Classic cuisine       $
2   Esszimmer       2019    47.806850   13.03409    Salzburg      Austria    5020   Creative              $
3   Carpe Diem      2019    47.800010   13.04006    Salzburg      Austria    5020   Market cuisine        $
4   Edvard          2019    48.216503   16.36852    Wien          Austria    1010   Modern cuisine  
Then I check how many NaN values are in each column. In the case of the price column there are 151 values:
In [ ]: restaurants_df.isnull().sum()
Out[ ]: name           0
        year           0
        latitude       0
        longitude      0
        city           2
        region         0
        zipCode      149
        cuisine        0
        price        151
        dtype: int64
After, I replace those values with the string "No Price", and confirm that all values have been replaced.
In [ ]: restaurants_df["price"].fillna("No Price", inplace = True)
        restaurants_df.isnull().sum()
Out[ ]: name           0
        year           0
        latitude       0
        longitude      0
        city           0
        region         0
        zipCode        0
        cuisine        0
        price          0
        dtype: int64
However, when I show the first 5 rows, the problem persists.
In [ ]: restaurants_df.head()
Out[ ]:
    name            year    latitude    longitude     city        region    zipCode   cuisine           price
0   Kilian Stuba    2019    47.348580   10.17114   Kleinwalsertal Austria    87568  Creative              $
1   Pfefferschiff   2019    47.837870   13.07917    Hallwang      Austria    5300   Classic cuisine       $
2   Esszimmer       2019    47.806850   13.03409    Salzburg      Austria    5020   Creative              $
3   Carpe Diem      2019    47.800010   13.04006    Salzburg      Austria    5020   Market cuisine        $
4   Edvard          2019    48.216503   16.36852    Wien          Austria    1010   Modern cuisine  
Any idea why this is happening and how I can solve it? Thanks in advance!
 
     
     
    