I am unable to understand the logic behind getting the output shape of the first hidden layer. I have taken some arbitrary examples as follows;
Example 1:
model.add(Dense(units=4,activation='linear',input_shape=(784,)))  
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_4"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_7 (Dense)              (None, 4)                 3140      
_________________________________________________________________
dense_8 (Dense)              (None, 10)                50        
=================================================================
Total params: 3,190
Trainable params: 3,190
Non-trainable params: 0
Example 2:
model.add(Dense(units=4,activation='linear',input_shape=(784,1)))   
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_6"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_11 (Dense)             (None, 784, 4)            8         
_________________________________________________________________
dense_12 (Dense)             (None, 784, 10)           50        
=================================================================
Total params: 58
Trainable params: 58
Non-trainable params: 0
Example 3:
model.add(Dense(units=4,activation='linear',input_shape=(32,28)))    
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_8"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_15 (Dense)             (None, 32, 4)             116       
_________________________________________________________________
dense_16 (Dense)             (None, 32, 10)            50        
=================================================================
Total params: 166
Trainable params: 166
Non-trainable params: 0
Example 4:
model.add(Dense(units=4,activation='linear',input_shape=(32,28,1)))    
model.add(Dense(units=10,activation='softmax'))
model.summary()
Model: "sequential_9"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_17 (Dense)             (None, 32, 28, 4)         8         
_________________________________________________________________
dense_18 (Dense)             (None, 32, 28, 10)        50        
=================================================================
Total params: 58
Trainable params: 58
Non-trainable params: 0
Please help me in understanding the logic.
Also, I think the rank of input_shape=(784,) and input_shape=(784,1) is the same then why is their Output Shape different?
 
     
     
     
     
     
     
    