I've only been using R for a short time. I use R 3.4.4. For a study I created clusters as follows:
library('cluster')
clusterward2 <- agnes(dist.om2, diss = TRUE, method = "ward")
plot(clusterward2)
plot(sort(clusterward2$height, decreasing=TRUE)[1:15], type='s', xlab="nb de classes", ylab="inertie")
points(c(2, 3,5), sort(clusterward2$height, decreasing=TRUE)[c(2, 3,5)],
       col = c("green3", "red3", "blue3"), cex = 2, lwd = 4)
cl2.3 <- cutree(clusterward2, k = 3)
Then, i retrieve the individual belonging to each cluster as follow :
split(mydata$colonneID, cl2.3)
Is it possible to retrieve the score that each individual had for clustering ? I would like to analyse the extreme of each class, but I don't know if it is possible and how do it.
My data :
donnees <- "CT  H_NH    I1  I2  I3  I4
CT_5    humain  SN_def  SN_dem  SN_dem  Pro
CT_6    humain  SN_def  SN_ind  SN_def  SN_dem
CT_7    humain  SN_def  SN_dem  SN_pos  SN_dem
CT_8    humain  SN_def  Autre   SN_def  SN_def
CT_9    humain  Autre   SN_def  SN_def  SN_def
CT_15   humain  SN_ind  SN_def  SN_def  SN_def
CT_17   humain  Autre   SN_pos  SN_dem  Autre
CT_18   humain  SN_def  Pro SN_def  Pro
CT_19   humain  SN_def  Pro SN_def  SN_pos
CT_20   humain  SN_def  SN_def  Pro SN_pos
CT_27   humain  NPP Pro Pro Pro
CT_29   humain  NPP SN_sansDET  NPP SN_pos
CT_30   humain  SN_sansDET  Pro SN_def  Pro
CT_32   humain  SN_def  SN_def  SN_def  SN_dem
CT_33   humain  Autre   NPP NPP SN_def
CT_34   humain  NPP Pro NPP Pro
CT_35   humain  SN_def  NPP Pro NPP"
Data <- read.table(text=donnees, header = TRUE)
The code i used :
Data.lab <- seqstatl(Data[,3:6])
Data.scode <- c("Autre", "NPP", "Pro", "SN_def", "SN_dem", "SN_ind", "SN_pos", "SN_sansDET")
Data.seq_7 <- seqdef(Data[, 3:6], states = Data.scode)
submat2 <- seqsubm(Data.seq_7, method = "TRATE")
dist.om2 <- seqdist(Data.seq_7, method = "OM", indel = 1,  sm = submat2)
library('cluster')
clusterward2 <- agnes(dist.om2, diss = TRUE, method = "ward")
plot(clusterward2, which.plots=2)
plot(sort(clusterward2$height, decreasing=TRUE)[1:15], type='s', xlab="nb de  classes", ylab="inertie")
points(c(2, 3,5), sort(clusterward2$height, decreasing=TRUE)[c(2, 3,5)],
 col = c("green3", "red3", "blue3"), cex = 2, lwd = 4)
cl2.3 <- cutree(clusterward2, k = 3)
Thank you very much for your help.
 
    