So I have a medium size database with 113K rows X 14 columns
Month District   Age Gender Education Disability Religion                          Occupation JobSeekers
1 2020-01      Dan   U17   Male      None       None   Jewish              Unprofessional workers          2
2 2020-01      Dan   U17   Male      None       None  Muslims          Sales and costumer service          1
3 2020-01      Dan   U17 Female      None       None    Other                           Undefined          1
4 2020-01      Dan 18-24   Male      None       None   Jewish         Production and construction          1
5 2020-01      Dan 18-24   Male      None       None   Jewish                     Academic degree          1
6 2020-01      Dan 18-24   Male      None       None   Jewish Practical engineers and technicians          1
  GMI ACU NACU NewSeekers NewFiredSeekers
1   0   0    2          0               0
2   0   0    1          0               0
3   0   0    1          0               0
4   0   0    1          0               0
5   0   0    1          0               0
6   0   0    1          1               1
I grouped it to a smaller tables that contain certain data that i need using
Sorta <- datac %>% 
  group_by(District, Month,Gender, Occupation) %>% 
  summarise(JobSeekers=sum(JobSeekers))
The outcome:
  District Month   Gender Occupation                    JobSeekers   GMI   ACU  NACU NewSeekers NewFiredSeekers
  <chr>    <chr>   <chr>  <chr>                              <int> <int> <int> <int>      <int>           <int>
1 Dan      2020-01 Female Academic degree                     4560   120  2622  1818        863             597
2 Dan      2020-01 Female Agriculture, forestry and fi~         14     9     2     3          1               0
3 Dan      2020-01 Female Machine Operators and drivers         57     6    10    41          9               6
4 Dan      2020-01 Female Managers                            1913    36   969   908        390             310
5 Dan      2020-01 Female Officials and clerks                1702   120   263  1319        344             243
6 Dan      2020-01 Female Practical engineers and tech~       2847    66  1125  1656        671             504
than I tried to plot from this table data that should show trends like unemployed numbers by districts, time table showing uneployment growth through time and more Each time and way i tried to do that i get various errors about the character columns so i'm asking for your help plotting characters and numeric values together
Here's the structure:
structure(
  list(
    District = c(
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan",
      "Dan"
    ),
    Month = c(
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01",
      "2020-01"
    ),
    Gender = c(
      "Female",
      "Female",
      "Female",
      "Female",
      "Female",
      "Female",
      "Female",
      "Female",
      "Female",
      "Female",
      "Male",
      "Male",
      "Male",
      "Male",
      "Male",
      "Male",
      "Male",
      "Male",
      "Male",
      "Male"
    ),
    Occupation = c(
      "Academic degree",
      "Agriculture, forestry and fishing",
      "Machine Operators and drivers",
      "Managers",
      "Officials and clerks",
      "Practical engineers and technicians",
      "Production and construction",
      "Sales and costumer service",
      "Undefined",
      "Unprofessional workers",
      "Academic degree",
      "Agriculture, forestry and fishing",
      "Machine Operators and drivers",
      "Managers",
      "Officials and clerks",
      "Practical engineers and technicians",
      "Production and construction",
      "Sales and costumer service",
      "Undefined",
      "Unprofessional workers"
    ),
    JobSeekers = c(
      4560L,
      14L,
      57L,
      1913L,
      1702L,
      2847L,
      480L,
      3086L,
      893L,
      1985L,
      2605L,
      44L,
      1276L,
      2236L,
      247L,
      2249L,
      1258L,
      2233L,
      924L,
      2462L
    ),
    GMI = c(
      120L,
      9L,
      6L,
      36L,
      120L,
      66L,
      47L,
      396L,
      155L,
      998L,
      119L,
      26L,
      240L,
      101L,
      30L,
      111L,
      322L,
      359L,
      309L,
      1124L
    ),
    ACU = c(
      2622L,
      2L,
      10L,
      969L,
      263L,
      1125L,
      99L,
      392L,
      259L,
      52L,
      1549L,
      1L,
      49L,
      797L,
      44L,
      829L,
      102L,
      202L,
      124L,
      58L
    ),
    NACU = c(
      1818L,
      3L,
      41L,
      908L,
      1319L,
      1656L,
      334L,
      2298L,
      479L,
      935L,
      937L,
      17L,
      987L,
      1338L,
      173L,
      1309L,
      834L,
      1672L,
      491L,
      1280L
    ),
    NewSeekers = c(
      863L,
      1L,
      9L,
      390L,
      344L,
      671L,
      83L,
      622L,
      201L,
      325L,
      550L,
      5L,
      239L,
      469L,
      53L,
      525L,
      233L,
      432L,
      212L,
      324L
    ),
    NewFiredSeekers = c(
      597L,
      0L,
      6L,
      310L,
      243L,
      504L,
      60L,
      375L,
      123L,
      150L,
      447L,
      4L,
      196L,
      405L,
      41L,
      429L,
      162L,
      316L,
      124L,
      190L
    )
  ),
  row.names = c(NA,-20L),
  class = c("grouped_df", "tbl_df", "tbl", "data.frame"),
  groups = structure(
    list(
      District = c("Dan", "Dan"),
      Month = c("2020-01", "2020-01"),
      Gender = c("Female", "Male"),
      .rows = list(1:10, 11:20)
    ),
    row.names = c(NA,-2L),
    class = c("tbl_df", "tbl", "data.frame"),
    .drop = TRUE
  )
)
2nd ques is about how i can make a map of 'hotspot' areas of unemployed people / occupations / ages
please help!
Update:
dist.oc.mo <- Cdata %>% 
  group_by(District,Gender,Occupation,Month) %>% 
  summarise(JobSeekers=sum(JobSeekers),GMI=sum(GMI), ACU=sum(ACU), NACU=sum(NACU), NewSeekers=sum(NewSeekers), NewFiredSeekers=sum(NewFiredSeekers))
p <- ggplot(data = dist.oc.mo) +
  geom_bar(mapping = aes(x = Occupation, y = JobSeekers, fill=factor(District)), 
           stat = "identity", position = "dodge", alpha=0.7 ) + 
  labs(title = "March-April Jobseekers", subtitle = "This barchart describes unemployment trend for March and April sorted by jobseekers number and occupation type", fill = "District", 
       x = "Occupation", y = "JobSeekers") +
  scale_x_discrete(labels = wrap_format(10)) +
  scale_fill_brewer(palette="Set1") +
  theme(legend.position = "bottom")
p
[https://i.stack.imgur.com/v0R0V.jpg][1]
Regards, Moshe
 
    

