I'm looking for someone who can help me to plot my Confusion Matrix. I need this for a term paper at the university. However I have very little experience in programming.
In the pictures you can see the classification report and the structure of my y_test and X_test in my case dtree_predictions.
I would be happy if someone can help me, because I have tried so many things but I just don't get a solution, only error messages.
X_train, X_test, y_train, y_test = train_test_split(X, Y_profile, test_size = 0.3, random_state = 30)
dtree_model = DecisionTreeClassifier().fit(X_train,y_train)
dtree_predictions = dtree_model.predict(X_test)
print(metrics.classification_report(dtree_predictions, y_test))
              precision    recall  f1-score   support
       0       1.00      1.00      1.00       222
       1       1.00      1.00      1.00       211
       2       1.00      1.00      1.00       229
       3       0.96      0.97      0.96       348
       4       0.89      0.85      0.87        93
       5       0.86      0.86      0.86       105
       6       0.94      0.93      0.94       116
       7       1.00      1.00      1.00       364
       8       0.99      0.97      0.98       139
       9       0.98      0.99      0.99       159
      10       0.97      0.96      0.97       189
      11       0.92      0.92      0.92       124
      12       0.92      0.92      0.92       119
      13       0.95      0.96      0.95       230
      14       0.98      0.96      0.97       452
      15       0.91      0.96      0.93       210
micro avg       0.96      0.96      0.96      3310
macro avg       0.95      0.95      0.95      3310
weighted avg    0.97      0.96      0.96      3310
samples avg     0.96      0.96      0.96      3310
next I print the metris of the multilabel confusion matrix
from sklearn.metrics import multilabel_confusion_matrix
multilabel_confusion_matrix(y_test, dtree_predictions)
array([[[440,   0],
    [  0, 222]],
   [[451,   0],
    [  0, 211]],
   [[433,   0],
    [  0, 229]],
   [[299,  10],
    [ 15, 338]],
   [[559,  14],
    [ 10,  79]],
   [[542,  15],
    [ 15,  90]],
   [[539,   8],
    [  7, 108]],
   [[297,   0],
    [  1, 364]],
   [[522,   4],
    [  1, 135]],
   [[500,   1],
    [  3, 158]],
   [[468,   8],
    [  5, 181]],
   [[528,  10],
    [ 10, 114]],
   [[534,   9],
    [  9, 110]],
   [[420,   9],
    [ 12, 221]],
   [[201,  19],
    [  9, 433]],
   [[433,   9],
    [ 19, 201]]])
and the structure of y_test and dtree_predictons
print(dtree_predictions)
print(dtree_predictions.shape)
[[0. 0. 1. ... 0. 1. 0.]
[1. 0. 0. ... 0. 1. 0.]
[0. 0. 1. ... 0. 1. 0.]
 ...
[1. 0. 0. ... 0. 0. 1.]
[0. 1. 0. ... 1. 0. 1.]
[0. 1. 0. ... 1. 0. 1.]]
(662, 16)
print(y_test)
      Cooler close to failure  Cooler reduced effiency  Cooler full    effiency  \
1985                      0.0                      0.0                   1.0   
322                       1.0                      0.0                   0.0   
2017                      0.0                      0.0                   1.0   
1759                      0.0                      0.0                   1.0   
1602                      0.0                      0.0                     1.0   
...                       ...                      ...                      ...   
128                       1.0                      0.0                   0.0   
321                       1.0                      0.0                   0.0   
53                        1.0                      0.0                   0.0   
859                       0.0                      1.0                     0.0   
835                       0.0                      1.0                       0.0   
  valve optimal  valve small lag  valve severe lag  \
1985            0.0              0.0               0.0   
322             0.0              1.0               0.0   
2017            1.0              0.0               0.0   
1759            0.0              0.0               0.0   
1602            1.0              0.0               0.0   
...             ...              ...               ...   
128             1.0              0.0               0.0   
321             0.0              1.0               0.0   
53              1.0              0.0               0.0   
859             1.0              0.0               0.0   
835             1.0              0.0               0.0   
  valve close to failure  pump no leakage  pump weak leakage  \
1985                     1.0              0.0                1.0   
322                      0.0              1.0                0.0   
2017                     0.0              0.0                1.0   
1759                     1.0              1.0                0.0   
1602                     0.0              1.0                0.0   
...                      ...              ...                ...   
128                      0.0              1.0                0.0   
321                      0.0              1.0                0.0   
53                       0.0              1.0                0.0   
859                      0.0              1.0                0.0   
835                      0.0              1.0                0.0   
  pump severe leakage  accu optimal pressure  \
1985                  0.0                    0.0   
322                   0.0                    1.0   
2017                  0.0                    0.0   
1759                  0.0                    1.0   
1602                  0.0                    0.0   
...                   ...                    ...   
128                   0.0                    1.0   
321                   0.0                    1.0   
53                    0.0                    1.0   
859                   0.0                    0.0   
835                   0.0                    0.0   
  accu slightly reduced pressure  accu severly reduced pressure  \
1985                             0.0                            1.0   
322                              0.0                            0.0   
2017                             0.0                            1.0   
1759                             0.0                            0.0   
1602                             0.0                            0.0   
...                              ...                            ...   
128                              0.0                            0.0   
321                              0.0                            0.0   
53                               0.0                            0.0   
859                              0.0                            0.0   
835                              0.0                            0.0   
  accu close to failure  stable flag stable  stable flag not stable  
1985                    0.0                 1.0                     0.0  
322                     0.0                 1.0                     0.0  
2017                    0.0                 1.0                     0.0  
1759                    0.0                 1.0                     0.0  
1602                    1.0                 0.0                     1.0  
...                     ...                 ...                     ...  
128                     0.0                 0.0                     1.0  
321                     0.0                 1.0                     0.0  
53                      0.0                 0.0                     1.0  
859                     1.0                 0.0                     1.0  
835                     1.0                 0.0                     1.0  
[662 rows x 16 columns]
 
     
    

