Given a dataframe:
FrameLen    FrameCapLen      IPHdrLen          IPLen  ...     Loss_25     Loss_50          Interval PacketTime
0      [118.0, 66.0]  [118.0, 66.0]  [20.0, 20.0]  [104.0, 52.0]  ...  [0.0, 0.0]  [0.0, 0.0]    [918.0, 918.0]   0.000031
1      [120.0, 66.0]  [120.0, 66.0]  [20.0, 20.0]  [106.0, 52.0]  ...  [0.0, 0.0]  [0.0, 0.0]  [3527.0, 3527.0]   0.000011
2      [117.0, 66.0]  [117.0, 66.0]  [20.0, 20.0]  [103.0, 52.0]  ...  [0.0, 0.0]  [0.0, 0.0]  [1256.0, 1256.0]   0.000016
3      [118.0, 66.0]  [118.0, 66.0]  [20.0, 20.0]  [104.0, 52.0]  ...  [0.0, 0.0]  [0.0, 0.0]    [652.0, 652.0]   0.000017
4      [119.0, 66.0]  [119.0, 66.0]  [20.0, 20.0]  [105.0, 52.0]  ...  [0.0, 0.0]  [0.0, 0.0]      [44.0, 44.0]   0.000032
...              ...            ...           ...            ...  ...         ...         ...               ...        ...
83287  [117.0, 66.0]  [117.0, 66.0]  [20.0, 20.0]  [103.0, 52.0]  ...  [0.0, 0.0]  [0.0, 0.0]    [472.0, 472.0]   0.000024
All the columns containing a list have the following types:
<class 'pandas.core.series.Series'>
0        [118.0, 66.0]
1        [120.0, 66.0]
2        [117.0, 66.0]
3        [118.0, 66.0]
4        [119.0, 66.0]
             ...
83287    [117.0, 66.0]
83288    [120.0, 66.0]
83289    [117.0, 66.0]
83290    [116.0, 66.0]
83291    [122.0, 66.0]
How can I expand these series for each column containing a Series, such that the result is:
FrameLen_1   FrameLen_2   FrameCapLen_1, ..., ...
118.0        66.0         118.0
It would be great if this can be done, under the assumption that one may not know how many columns contain a Series.
 
    