I have a data frame with data for several days: The code
import pandas
[...]
daily_data_f = pandas.DataFrame(daily_data, columns = ['Day', 'Total TODO/TODOE count'])
print(daily_data_f)
generates following output:
          Day  Total TODO/TODOE count
0  2020-05-16                      35
1  2020-05-17                      35
2  2020-05-18                      35
3  2020-05-19                      35
4  2020-05-20                      35
..        ...                     ...
64 2020-07-18                      35
65 2020-07-19                      35
66 2020-07-20                      35
68 2020-07-21                     151
I want to calculate the difference between the values of Total TODO/TODOE count on two subsequent days. The value jumped from 35 on 2020-06-28 to 151 on 2020-07-21. The value I want to calculate for 2020-07-21 151-35=116.
This answer suggests this approach:
df['new_column_name'] = df.apply(lambda x: my_function(x['value_1'], x['value_2']), axis=1)
I would have to write something like this:
daily_data_f['First Derivative'] = daily_data_f.apply(lambda x:diff(daily_data_f['Total TODO/TODOE count'], <PREVIOUS_VALUE>), axis=1)
where <PREVIOUS_VALUE> is the value of 'Total TODO/TODOE count' from the previous row (day).
Question: How can write an expression for <PREVIOUS_VALUE> (value of 'Total TODO/TODOE count' from the previous row)?
 
     
    