I encounter a strange problem when trying to train a model in R using caret :
> bart <- train(x = cor_data, y = factor(outcome), method = "bartMachine")
Error in tuneGrid[!duplicated(tuneGrid), , drop = FALSE] :
nombre de dimensions incorrect
However, when using rf, xgbTree, glmnet, or svmRadial instead of bartMachine, no error is raised.
Moreover, dim(cor_data) and length(outcome) return [1] 3056 134 and [1] 3056 respectively, which indicates that there is indeed no issue with the dimensions of my dataset.
I have tried changing the tuneGrid parameter in train, which resolved the problem but caused this issue instead :
Exception: java.lang.OutOfMemoryError thrown from the UncaughtExceptionHandler in thread "pool-89-thread-1"
My dataset includes no NA, and all variables are either numerical or binary.
My goal is to extract the most important variables in the bart model. For example, I use for random forests:
rf <- train(x = cor_data, y = factor(outcome), method = "rf")
rfImp <- varImp(rf)
rf_select <- row.names(rfImp$importance[order(- rfImp$importance$Overall)[1:43], , drop = FALSE])
Thank you in advance for your help.