I have a dataframe in pandas of organisation descriptions and project titles, shown below:
Columns are df['org_name'], df['org_description'], df['proj_title']. I want to add a column with the similarity score between the organisation description and project title, for each project(each row).
I'm trying to use gensim: https://radimrehurek.com/gensim/auto_examples/core/run_similarity_queries.html. However, I'm not sure how to adapt the tutorial for my use case, because in the tutorial we get a new query doc = "Human computer interaction" and then compared that against the documents in the corpus individually. Not sure where this choice is made (sims? vec_lsi?)
But I want the similarity score for just the two items in a given row of dataframe df, not one of them against the whole corpus, for each row and then append that to df as a column. How can I do this?