I have an excel sheet setup like below and have loaded as a df:
GPS_Lat     GPS_Lon     Location
50.70528    -120.44984  0
50.70528    -120.44984  0
50.70527    -120.44984  0
50.70527    -120.44984  0
50.70526    -120.44984  1
50.70526    -120.44984  1
50.70525    -120.44984  1
50.70525    -120.44984  0
50.70524    -120.44984  0
50.70524    -120.44984  0
50.70523    -120.44984  0
50.70523    -120.44984  0
50.70522    -120.44984  0
50.70522    -120.44984  0
50.70521    -120.44984  1
50.70521    -120.44984  1
50.7052     -120.44985  1
50.7052     -120.44985  1
50.70519    -120.44985  0
50.70519    -120.44986  0
50.70518    -120.44986  0
50.70518    -120.44986  0
50.70517    -120.44987  0
50.70517    -120.44987  0
I would like to keep values within 1 m of the first "1" that is encountered when going down the location column and put those values in a new data frame (named: df-n). If there are other sections with 1 values I would like to split those into separate data frames (named: df-n+1) while only keeping the points within 1 m of that first 1 as well. I would like each new data frame to be numbered sequentially. I am completely stumped on this one.
Identify points below automatically and create new data frames with rows that are within 1 m of those points (or any other defined distance) for each with the original data frame name and a suffix of sequential order. Therefore original "df" second "df-1" and "df-2"
I will eventually be using a radius of 10 km and my data set can be up to 20k rows.
EDIT: To provide clarity for outputs. Using hypothetical distances with a radius cutoff of 2 m.
   Row  GPS_Lat    GPS_Lon     Location hypothetical_dist_1 hypothetical_dist_2 
    1   50.70528    -120.44984  0   4   14
    2   50.70528    -120.44984  0   3   13
    3   50.70527    -120.44984  0   2   12
    4   50.70527    -120.44984  0   1   11
    5   50.70526    -120.44984  1   0   10
    6   50.70526    -120.44984  1   1   9
    7   50.70525    -120.44984  1   2   8
    8   50.70525    -120.44984  0   3   7
    9   50.70524    -120.44984  0   4   6
    10  50.70524    -120.44984  0   5   5
    11  50.70523    -120.44984  0   6   4
    12  50.70523    -120.44984  0   7   3
    13  50.70522    -120.44984  0   8   2
    14  50.70522    -120.44984  0   9   1
    15  50.70521    -120.44984  1   10  0
    16  50.70521    -120.44984  1   11  1
    17  50.7052     -120.44985  1   12  2
    18  50.7052     -120.44985  1   13  3
    19  50.70519    -120.44985  0   14  4
    20  50.70519    -120.44986  0   15  5
    21  50.70518    -120.44986  0   16  6
    22  50.70518    -120.44986  0   17  7
    23  50.70517    -120.44987  0   18  8
    24  50.70517    -120.44987  0   19  9
OUTPUT:
df-1
Row GPS_Lat     GPS_Lon    Location hypothetical_dist_1 
3   50.70527    -120.44984  0       2
4   50.70527    -120.44984  0       1
5   50.70526    -120.44984  1       0
6   50.70526    -120.44984  1       1
7   50.70525    -120.44984  1       2
And
df-2
Row GPS_Lat     GPS_Lon    Location hypothetical_dist_2
13  50.70522    -120.44984  0       2
14  50.70522    -120.44984  0       1
15  50.70521    -120.44984  1       0
16  50.70521    -120.44984  1       1
17  50.7052     -120.44985  1       2
Basically the workflow is as follows: batch load multiple .csv files into a list, name the list items based on the file names, separate each list item using the radius chosen (into filename-1, filename-2, etc.), plot values in the other columns against each other, and export all of the plots.
 
     
    