Pandas normalizes 2017-12-31 to 2017-12-31 00:00 and then creates a range that ends in that last datetime... I would include a last row before resampling with
df.loc['2018-01-01'] = 0
Edit:
You can get the result you want with numpy.repeat
Take this df
np.random.seed(1)
weather = pd.DataFrame(index=pd.date_range('2017-01-01', '2017-12-31'),
    data={'WEATHER_MAX': np.random.random(365)*15})
            WEATHER_MAX
2017-01-01     6.255330
2017-01-02    10.804867
2017-01-03     0.001716
2017-01-04     4.534989
2017-01-05     2.201338
...                 ...
2017-12-27     4.503725
2017-12-28     2.145087
2017-12-29    13.519627
2017-12-30     8.123391
2017-12-31    14.621106
[365 rows x 1 columns]
By repeating on axis=1 you can then transform the default range(24) column names to hourly timediffs
# repeat, then stack
hourly = pd.DataFrame(np.repeat(weather.values, 24, axis=1),
    index=weather.index).stack()
# combine date and hour
hourly.index = (
    hourly.index.get_level_values(0) +
    pd.to_timedelta(hourly.index.get_level_values(1), unit='h')
)
hourly = hourly.rename('WEATHER_MAX').to_frame()
Output
                     WEATHER_MAX
2017-01-01 00:00:00     6.255330
2017-01-01 01:00:00     6.255330
2017-01-01 02:00:00     6.255330
2017-01-01 03:00:00     6.255330
2017-01-01 04:00:00     6.255330
...                          ...
2017-12-31 19:00:00    14.621106
2017-12-31 20:00:00    14.621106
2017-12-31 21:00:00    14.621106
2017-12-31 22:00:00    14.621106
2017-12-31 23:00:00    14.621106
[8760 rows x 1 columns]