I have a Pandas dataframe that looks like this:
| PLAYER  | DATE       | SCORE | GAME | 
|---------|------------|-------|------|
| Albert  | 2020-08-12 | 10    | X    |
| Barney  | 2020-08-12 | 100   | X    |
| Charlie | 2020-08-12 | 1000  | X    |
| Albert  | 2020-08-13 | 20    | X    |
| Barney  | 2020-08-13 | 200   | X    |
| Charlie | 2020-08-13 | 2000  | X    |
| Albert  | 2020-08-14 | 30    | Y    |
| Barney  | 2020-08-14 | 300   | Y    |
| Charlie | 2020-08-14 | 3000  | Y    |
| Albert  | 2020-08-15 | 40    | Y    |
| Barney  | 2020-08-15 | 400   | Y    |
| Charlie | 2020-08-15 | 4000  | Y    |
| Albert  | 2020-08-16 | 50    | Z    |
| Barney  | 2020-08-16 | 500   | Z    |
| Charlie | 2020-08-16 | 5000  | Z    |
| Albert  | 2020-08-17 | 60    | Z    |
| Barney  | 2020-08-17 | 600   | Z    |
| Charlie | 2020-08-17 | 6000  | Z    |
I`m trying to create a new column with 2-day score averages for each player as a subset, so that I get the following result:
| PLAYER  | DATE       | SCORE | GAME | 2-DAY AVG |
|---------|------------|-------|------|-----------|
| Albert  | 2020-08-12 | 10    | X    | NaN       |
| Barney  | 2020-08-12 | 100   | X    | NaN       |
| Charlie | 2020-08-12 | 1000  | X    | NaN       |
| Albert  | 2020-08-13 | 20    | X    | 15        | 
| Barney  | 2020-08-13 | 200   | X    | 150       |
| Charlie | 2020-08-13 | 2000  | X    | 1500      |
| Albert  | 2020-08-14 | 30    | Y    | 25        |
| Barney  | 2020-08-14 | 300   | Y    | 250       |
| Charlie | 2020-08-14 | 3000  | Y    | 2500      |
| Albert  | 2020-08-15 | 40    | Y    | 35        |
| Barney  | 2020-08-15 | 400   | Y    | 350       |
| Charlie | 2020-08-15 | 4000  | Y    | 3500      |
| Albert  | 2020-08-16 | 50    | Z    | 45        |
| Barney  | 2020-08-16 | 500   | Z    | 450       |
| Charlie | 2020-08-16 | 5000  | Z    | 4500      |
| Albert  | 2020-08-17 | 60    | Z    | 55        |
| Barney  | 2020-08-17 | 600   | Z    | 550       |
| Charlie | 2020-08-17 | 6000  | Z    | 5500      |
I've searched stack overflow and tried several combinations of code using groupby() with rolling.mean(2) functions, along with python conditional statements, but failed to do so.
Is there a clever way to do it in Pandas?
 
     
    