I think this will be quite simpler using a decorator implemented as a class:
class deco:
def __init__(self, cls):
self.cls = cls
def __call__(self, f):
setattr(self.cls, f.__name__, f)
return self.cls
class A:
def __init__(self, val):
self.val = val
@deco(A)
def compute(a_instance):
print(a_instance.val)
A(1).compute()
A(2).compute()
outputs
1
2
But just because you can do it does not mean you should. This can become a debugging nightmare, and will probably give a hard time to any static code analyser or linter (PyCharm for example "complains" with Unresolved attribute reference 'compute' for class 'A')
Why doesn't it work out of the box when we split it to different modules (more specifically, when compute is defined in another module)?
Assume the following:
a.py
print('importing deco and A')
class deco:
def __init__(self, cls):
self.cls = cls
def __call__(self, f):
setattr(self.cls, f.__name__, f)
return self.cls
class A:
def __init__(self, val):
self.val = val
b.py
print('defining compute')
from a import A, deco
@deco(A)
def compute(a_instance):
print(a_instance.val)
main.py
from a import A
print('running main')
A(1).compute()
A(2).compute()
If we execute main.py we get the following:
importing deco and A
running main
Traceback (most recent call last):
A(1).compute()
AttributeError: 'A' object has no attribute 'compute'
Something is missing. defining compute is not outputted. Even worse, compute is never defined, let alone getting bound to A.
Why? because nothing triggered the execution of b.py. Just because it sits there does not mean it gets executed.
We can force its execution by importing it. Feels kind of abusive to me, but it works because importing a file has a side-effect: it executes every piece of code that is not guarded by if __name__ == '__main__, much like importing a module executes its __init__.py file.
main.py
from a import A
import b
print('running main')
A(1).compute()
A(2).compute()
outputs
importing deco and A
defining compute
running main
1
2