With numpy
import numpy as np
    
arr = [1.1, 1.3, 2.1, 2.2, 2.3]
find_gaps = np.array(arr).round(1)
find_gaps[np.r_[np.diff(find_gaps).round(1), False] == 0.2] + 0.1
Output
array([1.2])
Test with random data
import numpy as np
np.random.seed(10)
arr = np.arange(0.1, 10.4, 0.1)
mask = np.random.randint(0,2, len(arr)).astype(np.bool)
gaps = arr[mask]
print(gaps)
find_gaps = np.array(gaps).round(1)
print('missing values:')
print(find_gaps[np.r_[np.diff(find_gaps).round(1), False] == 0.2] + 0.1)
Output
[ 0.1  0.2  0.4  0.6  0.7  0.9  1.   1.2  1.3  1.6  2.2  2.5  2.6  2.9
  3.2  3.6  3.7  3.9  4.   4.1  4.2  4.3  4.5  5.   5.2  5.3  5.4  5.6
  5.8  5.9  6.1  6.4  6.8  6.9  7.3  7.5  7.6  7.8  7.9  8.1  8.7  8.9
  9.7  9.8 10.  10.1]
missing values:
[0.3 0.5 0.8 1.1 3.8 4.4 5.1 5.5 5.7 6.  7.4 7.7 8.  8.8 9.9]
More general solution
Find all missing value with specific gap size
import numpy as np
def find_missing(find_gaps, gaps = 1):
    find_gaps = np.array(find_gaps)
    gaps_diff = np.r_[np.diff(find_gaps).round(1), False]
    gaps_index = find_gaps[(gaps_diff >= 0.2) & (gaps_diff <= round(0.1*(gaps + 1),1))]
    gaps_values = np.searchsorted(find_gaps, gaps_index)
    ranges = np.vstack([(find_gaps[gaps_values]+0.1).round(1),find_gaps[gaps_values+1]]).T
    return np.concatenate([np.arange(start, end, 0.1001) for start, end in ranges]).round(1)
vals = [0.1,0.3, 0.6, 0.7, 1.1, 1.5, 1.8, 2.1]
print('Vals:', vals)
print('gap=1', find_missing(vals, gaps = 1))
print('gap=2', find_missing(vals, gaps = 2))
print('gap=3', find_missing(vals, gaps = 3))
Output
Vals: [0.1, 0.3, 0.6, 0.7, 1.1, 1.5, 1.8, 2.1]
gap=1 [0.2]
gap=2 [0.2 0.4 0.5 1.6 1.7 1.9 2. ]
gap=3 [0.2 0.4 0.5 0.8 0.9 1.  1.2 1.3 1.4 1.6 1.7 1.9 2. ]