If using Python >= 3.7:
df[df['col'].map(lambda x: x.isascii())]
where col is your target column.
Data:
df = pd.DataFrame({
    'colA': ['**She’s the Hollywood Power Behind Those ...**', 
             'Hello, world!', 'Cainã', 'another value', 'test123*', 'âbc']
})
print(df.to_markdown())
|    | colA                                                  |
|---:|:------------------------------------------------------|
|  0 | **She’s the Hollywood Power Behind Those ...** |
|  1 | Hello, world!                                         |
|  2 | Cainã                                                 |
|  3 | another value                                         |
|  4 | test123*                                              |
|  5 | âbc                                                   |
Identifying and filtering strings with non-English characters (see the ASCII printable characters):
df[df.colA.map(lambda x: x.isascii())]
Output:
            colA
1  Hello, world!
3  another value
4       test123*
Original approach was to use a user-defined function like this:
def is_ascii(s):
    try:
        s.encode(encoding='utf-8').decode('ascii')
    except UnicodeDecodeError:
        return False
    else:
        return True