I have two datasets, df1 and df2, where:
I would like to perform an 'inner-join' on the date and name columns however, I wish to re-order some of the columns as well.
df1
name    freeG   totalG  sku      date
a       4       10      hi       10/10/2020
b       10      20      hi       10/10/2020
c       8       10      hello    10/10/2020
d       1       5       hello    10/10/2020
e       1       5       hey      10/10/2020
f       2       5       hey      10/10/2020
g       1       5       hey      10/10/2020
df2
total   freeS   usedS   name   date  
10      5       5       a      10/10/2020
20      10      10      b      10/10/2020
30      5       25      c      10/10/2020
40      10      30      d      10/10/2020
50      10      40      e      10/10/2020
10      5       5       f      10/10/2020
10      5       5       g      10/10/2020
Desired Outcome
date           name freeG   totalG  sku     usedS   freeS   total  
10/10/2020      a   4       10      hi      5       5       10
10/10/2020      b   10      20      hi      10      10      20
10/10/2020      c   8       10      hello   25      5       30
10/10/2020      d   1       5       hello   30      10      40
10/10/2020      e   1       5       hey     40      10      50
10/10/2020      f   2       5       hey     5       5       10
10/10/2020      g   1       5       hey     5       5       10
This is what I am doing
import pandas as pd
import numpy as np
new = pd.concat([df1, df2], axis=1, join='inner', inner_on=['date','name'])
//change order of columns
new1 = new[['date', 'name', 'freeG', 'totalG', 'sku', 'usedS', 'freeS', 'total']]
However, I am not able to join using the above syntax. Any suggestion is appreciated
 
     
    