Description:
I have a pandas dataframe that contains two columns ID and Value.
I want to group the the ID column
and convert the group results (Value) into multiple columns with Numeric suffix as Value1, Value2, Value3 and so on based on the total results.
Example:
Current DataFrame:
df = pd.DataFrame({'ID': ['A', 'A', 'A', 'B', 'C', 'C', 'D', 'E', 'F', 'F', 'F', 'F'], 'Value': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L'] } )
df
   ID Value
0   A     A
1   A     B
2   A     C
3   B     D
4   C     E
5   C     F
6   D     G
7   E     H
8   F     I
9   F     J
10  F     K
11  F     L
Expected DataFrame:
  ID  Value1  Value2  Value3  Value4
0  A       A     B       C       NaN
1  B       D     NaN     NaN     NaN
2  C       E     F       NaN     NaN
3  D       G     NaN     NaN     NaN
4  E       H     NaN     NaN     NaN
5  F       I     J       K       L
I have tried multiple solutions with pivot table as well, but I don't get the results.
What I tried
pd.pivot(df, index='ID', columns='ID', values='Value')
 
     
    