In [74]: column_list = [df.columns[k:k+5] for k in range(2, len(df.columns), 5)]
In [75]: column_list
Out[75]:
[Index(['Col 1', 'Col 2', 'Col 3', 'Col 4', 'Col 5'], dtype='object'),
Index(['Col 6', 'Col 7', 'Col 8', 'Col 9', 'Col 10'], dtype='object')]
In [76]: dfs = [df[['id', 'city'] + columns.tolist()].rename(columns=dict(zip(columns, range(5)))) for columns in column_list]
In [77]: dfs
Out[77]:
[ id city 0 1 2 3 4
0 1 1.0 51 155 255 355 455
1 2 0.0 52 155 255 355 455
2 3 NaN 53 155 255 355 455
3 4 1.0 54 155 255 355 545
4 5 7.0 55 155 255 355 455,
id city 0 1 2 3 4
0 1 1.0 666 777 955 55 553
1 2 0.0 666 777 595 55 553
2 3 NaN 666 777 559 55 535
3 4 1.0 666 777 559 55 535
4 5 7.0 666 777 955 55 535]
In [78]: pd.concat(dfs, ignore_index=True)
Out[78]:
id city 0 1 2 3 4
0 1 1.0 51 155 255 355 455
1 2 0.0 52 155 255 355 455
2 3 NaN 53 155 255 355 455
3 4 1.0 54 155 255 355 545
4 5 7.0 55 155 255 355 455
5 1 1.0 666 777 955 55 553
6 2 0.0 666 777 595 55 553
7 3 NaN 666 777 559 55 535
8 4 1.0 666 777 559 55 535
9 5 7.0 666 777 955 55 535
To explain :
- First generate the required columns for each slice
pd.concat requires the column names of all the dataframes in the list to be the same, hence the renames in rename(columns=dict(zip(columns, range(5)))). We are just renaming the sliced columns to 0,1,2,3,4
- Last step is to concat everything.
EDIT
Based on the comments by OP:
Sorry @Asish M. but how to add a column for dataset number in each dataset of dfs, eg- here we split our dataset into 2, so I need one column which says for first 1 to 5 ids - 'first' (or 1), then again for another 1 to 5 ids - 'second' (or 2) in the output. I hope it's making scenes
dfs = [df[['id', 'city'] + columns.tolist()].assign(split_group=idx).rename(columns=dict(zip(columns, range(5)))) for idx, columns in enumerate(column_list)]
df.assign(split_group=idx) creates a column 'split_group' with value = idx. You get the idx from enumerating the column_list