I am new to coding and I can understand that this is a very basic question
I have a dataframe as:
df
      Unnamed: 0  time                 home_team      away_team       full_time_result                    both_teams_to_score        double_chance
--  ------------  -------------------  -------------  --------------  ----------------------------------  -------------------------  ------------------------------------
 0             0  2021-01-12 18:00:00  Sheff Utd      Newcastle       {'1': 2400, 'X': 3200, '2': 3100}   {'yes': 2000, 'no': 1750}  {'1X': 1360, '12': 1360, '2X': 1530}
 1             1  2021-01-12 20:15:00  Burnley        Man Utd         {'1': 7000, 'X': 4500, '2': 1440}   {'yes': 1900, 'no': 1900}  {'1X': 2620, '12': 1180, '2X': 1100}
 2             2  2021-01-12 20:15:00  Wolverhampton  Everton         {'1': 2450, 'X': 3200, '2': 3000}   {'yes': 1950, 'no': 1800}  {'1X': 1360, '12': 1360, '2X': 1530}
 3             3  2021-01-13 18:00:00  Man City       Brighton        {'1': 1180, 'X': 6500, '2': 14000}  {'yes': 2040, 'no': 1700}  {'1X': 1040, '12': 1110, '2X': 4500}
 4             4  2021-01-13 20:15:00  Aston Villa    Tottenham       {'1': 2620, 'X': 3500, '2': 2500}   {'yes': 1570, 'no': 2250}  {'1X': 1500, '12': 1280, '2X': 1440}
 5             5  2021-01-14 20:00:00  Arsenal        Crystal Palace  {'1': 1500, 'X': 4000, '2': 6500}   {'yes': 1950, 'no': 1800}  {'1X': 1110, '12': 1220, '2X': 2500}
 6             6  2021-01-15 20:00:00  Fulham         Chelsea         {'1': 5750, 'X': 4330, '2': 1530}   {'yes': 1800, 'no': 1950}  {'1X': 2370, '12': 1200, '2X': 1140}
 7             7  2021-01-16 12:30:00  Wolverhampton  West Brom       {'1': 1440, 'X': 4200, '2': 7500}   {'yes': 2250, 'no': 1570}  {'1X': 1100, '12': 1220, '2X': 2620}
 8             8  2021-01-16 15:00:00  Leeds          Brighton        {'1': 2000, 'X': 3600, '2': 3600}   {'yes': 1530, 'no': 2370}  {'1X': 1280, '12': 1280, '2X': 1720}
I am looking to format the dictionary list nicely and get the dataframe as e.g. the full_time_result column would be split into full_time_result_1, full_time_result_X, full_time_result_2 and the same for both_teams_to_score and double_chance as below:
      Unnamed: 0  time                 home_team      away_team       full_time_result_1                    full_time_result_x                    full_time_result_2                    both_teams_to_score_yes        both_teams_to_score_no        double_chance_1X
--  ------------  -------------------  -------------  --------------  ----------------------------------  -------------------------  ------------------------------------
I am following this example given here but I am unable to get it to work. Here is my code:
import pandas as pd
from tabulate import tabulate
df = pd.read_csv(r'C:\Users\Harshad\Desktop\re.csv')
df['full_time_result'] = df['full_time_result'].apply(pd.Series)
print(tabulate(df, headers='keys'))
      Unnamed: 0  time                 home_team      away_team       full_time_result                    both_teams_to_score        double_chance
--  ------------  -------------------  -------------  --------------  ----------------------------------  -------------------------  ------------------------------------
 0             0  2021-01-12 18:00:00  Sheff Utd      Newcastle       {'1': 2400, 'X': 3200, '2': 3100}   {'yes': 2000, 'no': 1750}  {'1X': 1360, '12': 1360, '2X': 1530}
 1             1  2021-01-12 20:15:00  Burnley        Man Utd         {'1': 7000, 'X': 4500, '2': 1440}   {'yes': 1900, 'no': 1900}  {'1X': 2620, '12': 1180, '2X': 1100}
 2             2  2021-01-12 20:15:00  Wolverhampton  Everton         {'1': 2450, 'X': 3200, '2': 3000}   {'yes': 1950, 'no': 1800}  {'1X': 1360, '12': 1360, '2X': 1530}
 3             3  2021-01-13 18:00:00  Man City       Brighton        {'1': 1180, 'X': 6500, '2': 14000}  {'yes': 2040, 'no': 1700}  {'1X': 1040, '12': 1110, '2X': 4500}
 4             4  2021-01-13 20:15:00  Aston Villa    Tottenham       {'1': 2620, 'X': 3500, '2': 2500}   {'yes': 1570, 'no': 2250}  {'1X': 1500, '12': 1280, '2X': 1440}
Help would be greatly appreciated.
 
    