I am trying to make an n-body solver (a bunch of objects gravitationally attracted to each-other). The problem is that it looks like the gravity1 function does not feed back the return objects, resulting in linear motion of the objects:
The code looks like this:
    updateGame :: Game -> SF AppInput Game
    updateGame game = 
      proc input -> do
        ...
        objs        <- updateObjects' $ _foreground (Game._objects game) -< ()
    
        ...
    updateObjects' :: [Object] -> SF () [Object]
    updateObjects' objs =  parB . fmap (updateObject1 objs ) $ objs
    
    updateObject1 :: [Object] -> Object -> SF () Object
    updateObject1 objs0 obj0 =
      proc () -> do
        obj  <- gravity1 (objs0, obj0) -< ()
        returnA -< obj
    
    g = 6.673**(-11.0) :: Double
    
    gravity1 :: ([Object], Object) -> SF () (Object)    
    gravity1 (objs0, obj0) =
      proc () -> do
        let
          m0     =  _mass obj0               :: Double
          xform0 = (head . _transforms) obj0 :: M44 Double
          p0     = ( view (_w._xyz)) xform0  :: V3 Double
          
          ms     = foldr1 (+) $ fmap (_mass) objs0              :: Double
          xforms = fmap (head . _transforms) objs0              :: [M44 Double]
          ps     = foldr1 (^+^) $ fmap ( view (_w._xyz)) xforms :: V3 Double
    
          dir  = ps ^-^ p0                 :: V3 Double
          dist = norm dir                  :: Double
          f    = g * m0 * ms / dist**2.0   :: Double
          acc  = (f / ms) *^ (dir ^/ dist) :: V3 Double
          s    = 1000000000000000.0
          
        --vel <- ((_velocity obj0) ^+^) ^<< integral -< (s *^ acc)
        vel <- ((_velocity obj0) ^+^) ^<< integral -< (s *^ (DT.trace ("acc :" ++ show (s *^ acc)) $ acc))
    
        let mtx =
              mkTransformationMat
              rot
              tr
              where
                rot = (view _m33 xform0)
                tr  = vel + p0
          
        returnA -< obj0 { _transforms = [mtx]
                        , _velocity   = vel }
Running the code, there's the output I read in the console:
acc :V3 12105.49700148636 12105.49700148636 0.0
acc :V3 NaN NaN NaN
acc :V3 (-12105.49700148636) 12105.49700148636 0.0
acc :V3 12105.49700148636 12105.49700148636 0.0
acc :V3 NaN NaN NaN
acc :V3 (-12105.49700148636) 12105.49700148636 0.0
acc :V3 12105.49700148636 12105.49700148636 0.0
acc :V3 NaN NaN NaN
acc :V3 (-12105.49700148636) 12105.49700148636 0.0
acc :V3 12105.49700148636 12105.49700148636 0.0
acc :V3 NaN NaN NaN
acc :V3 (-12105.49700148636) 12105.49700148636 0.0
acc :V3 12105.49700148636 12105.49700148636 0.0
acc :V3 NaN NaN NaN
acc :V3 (-12105.49700148636) 12105.49700148636 0.0
acc :V3 12105.49700148636 12105.49700148636 0.0
acc :V3 NaN NaN NaN
acc :V3 (-12105.49700148636) 12105.49700148636 0.0
acc :V3 12105.49700148636 12105.49700148636 0.0
acc :V3 NaN NaN NaN
Basically the values are all the same (the NaN's are due to object computed against itself, which I should fix, but that's not the issue here), it looks like the gravity1 function does not feed back the return object, despite return value being:
    returnA -< obj0 { _transforms = [mtx]
                    , _velocity   = vel }
The result is the linear motion of the objects, since acc seems to be a constant.
My expectation here is that aftergravity1 :: ([Object], Object) -> SF () (Object) has updated and returned the object, the updateObjects' objs =  parB . fmap (updateObject1 objs ) $ objs and updateObject1 objs0 obj0 = ... returnA -< obj should result in all objects being updated and next iteration cycle should feed the gravity1 :: ([Object], Object) -> SF () (Object) with an updated set of objects, so that the value of acc is different every frame...
Am I misunderstanding the logic of how things are supposed to work here?