user_id     user_verified
1              False
2              False
3              False
4              True
5              False
6              True
How to remove all the 'False'values and keep 'True' values?
user_id     user_verified
1              False
2              False
3              False
4              True
5              False
6              True
How to remove all the 'False'values and keep 'True' values?
 
    
    df = df[df['user_verified'] == True]
You can check the condition that way. This will keep the row if True in column 2.
You can also drop row based on bolean:
df.drop(df[df['user_verified'] == False].index, inplace=True)
Or even, to keep the True:
df = df[df.user_verified]
 
    
    Assuming your data is in a dataframe as specified in a similar format below:
data = pd.DataFrame(zip(range(1,7), [False, False, False, False, True, False, True]), columns=['user_id', 'user_verified'])
You can simply use masking since the user_verified is boolean:
verified = data[data['user_verified']]
 
    
    There are some ways to do it
df = df[df['user_verified'] == True]
Or you can also use
df = df.loc[df['user_verified'] == True]
 
    
    Use:
df = df[df['user_verified'] == True] 
or(without creating copy):
df = df.loc[df.user_verified,:]