Now that you have explained the problem further.  Given a DataFrame like:
di = {'Proj':['A', 'B', 'C'], 'CF':[[pd.to_datetime('2021/01/26')], [pd.to_datetime(np.nan)], [pd.to_datetime(np.nan), pd.to_datetime(np.nan)] ], 
      'VPC':[[pd.to_datetime(np.nan), pd.to_datetime('2019/03/18')], [pd.to_datetime('2016/03/18'), pd.to_datetime('2018/03/24')], [pd.to_datetime('2018/03/26'), pd.to_datetime(np.nan)]]}
df = pd.DataFrame(di)
df
The frame looks like:
    Proj    CF                  VPC
0   A   [2021-01-26 00:00:00]   [NaT, 2019-03-18 00:00:00]
1   B   [NaT]                   [2016-03-18 00:00:00, 2018-03-24 00:00:00]
2   C   [NaT, NaT]              [2018-03-26 00:00:00, NaT]  
Because the NaTs are embedded within Frame Row cell lists, I would proceed as follows:
def replaceNaTsvalue(col_data):
    rslt = []    
    for row in col_data:
        row_data = []
        for itm in row:
            if not pd.isnull(itm):
                row_data.append(itm)
        
        if len(row_data) > 0:
            rslt.append(row_data)
        else: 
            rslt.append(' ')
    return rslt  
def replace_all_NaTs(cols, dx):
    for col_name in cols:
        rslt = replaceNaTsvalue(dx[col_name])
        dx[col_name] = rslt
    return dx
Now by executing:
replace_all_NaTs(['CF', 'VPC'], df)  
The resulting DF looks like:
    Proj    CF                  VPC
0   A   [2021-01-26 00:00:00]   [2019-03-18 00:00:00]
1   B                           [2016-03-18 00:00:00, 2018-03-24 00:00:00]
2   C                           [2018-03-26 00:00:00]