I have a txt. file that looks as follows:
Name 1
                                                           
                                                           
   @Name( )                  Value       WATER       WHP     
                  Date       Unit         Unit       Unit     
-------------- ---------- ---------- ---------- ---------- 
Name 1       20081220      2900.00       0.00    3300.00 
Name 1       20081221      0.00          0.00    3390.00 
Name 1       20081222      2500.00       0.00    2802.00 
Name 1       20081223      0.00          0.00    3022.00
Name 1       20081224      0.00          0.00    3022.00
I used the following code to import into python:
df = pd.read_csv(r'test_prd.txt', skiprows=6, engine="python", header=None)
df.columns = ['Test']
df.drop(df.tail(1).index, inplace = True) # because of file format
df = df.Test.str.split(expand=True)
df.rename(columns ={0:'Name', 1:'Number', 2:'Date', 3:'Value', 4:'Water', 5:'WHP'}
,inplace=True)
df['Date'] = pd.to_datetime(df['Date']).dt.floor('D').dt.strftime('%Y-%m-%d')
df['Note'] = (df['Value']).apply(lambda x: 'yes' if x==0 else '')
del df['Water']
del df['WHP']
    
df['Name'] = df['Name'].astype(str) + ' ' + df['Number'].astype(str)
del df['Number']
After using this code the data frame looks like:
           Name      Date       Value       Note
    0     Name 1  2008-12-20    2900.00      
    1     Name 1  2008-12-21    0.00         Yes
    2     Name 1  2008-12-22    2500.00      
    3     Name 1  2008-12-23    0.00         Yes
    4     Name 1  2008-12-24    0.00         Yes 
   ...    ...        ...        ...          ...
    78    Name    2009-03-15    0.00         Yes
    79    Name    2009-03-16    3000.00      
    80    Name    2009-03-17    0.00         Yes
   ...    ...        ...        ...          ...
I want to print the periods of time (start date - end date) for which the 'Value' column equals zero, i.e, when 'Note'=Yes. Any other row were the value is non-zero can be removed from the data frame. If there is a standalone value of zero (preceded and followed by a non-zero value), the start and end date would be the same.
The expected output should look like this:
      Name     Start Date      End Date     Value       Note
1     Name     2008-12-21    2008-12-21     0.00         Yes
2     Name     2008-12-23    2009-03-15     0.00         Yes
3     Name     2009-03-17        ***        0.00         Yes
       ...        ...           ...         ...          ...
I was trying to use a conditional if statement or df.loc but I don't know my way around Python enough to put it together. Any advice would be appreciated.
 
     
    