If I have a dataframe (df_data) like:
ID        Time                X        Y        Z        H
05  2020-06-26 14:13:16    0.055    0.047    0.039    0.062
05  2020-06-26 14:13:21    0.063    0.063    0.055    0.079
05  2020-06-26 14:13:26    0.063    0.063    0.063    0.079
05  2020-06-26 14:13:31    0.095    0.102    0.079    0.127
...    ..    ...     ...     ...      ...      ...      ...
01  2020-07-01 08:59:43    0.063    0.063    0.047    0.079
01  2020-07-01 08:59:48    0.055    0.055    0.055    0.079
01  2020-07-01 08:59:53    0.071    0.063    0.055    0.082
01  2020-07-01 08:59:58    0.063    0.063    0.047    0.082
01  2020-07-01 08:59:59    0.047    0.047    0.047    0.071
[17308709 rows x 8 columns]
which I want to filter by another dataframe of intervals (df_intervals), like:
int_id         start               end
1            2020-02-03 18:11:59   2020-02-03 18:42:00
2            2020-02-03 19:36:59   2020-02-03 20:06:59
3            2020-02-03 21:00:59   2020-02-03 21:31:00
4            2020-02-03 22:38:00   2020-02-03 23:08:00
5            2020-02-04 05:55:00   2020-02-04 06:24:59
...                         ...                   ...
1804         2021-01-10 13:50:00   2021-01-10 14:20:00
1805         2021-01-10 18:10:00   2021-01-10 18:40:00
1806         2021-01-10 19:40:00   2021-01-10 20:10:00
1807         2021-01-10 21:25:00   2021-01-10 21:55:00
1808         2021-01-10 22:53:00   2021-01-10 23:23:00
[1808 rows x 2 columns]
what is the most efficient way to do so? I have a large dataset and if I try to iterate over it like:
for i in range(len(intervals)):
    df_filtered = df[df['Time'].between(intervals['start'][i], intervals['end'][i])
    ...
    ...
    ...
it takes forever! I know that I shouldn't iterate over large dataframes, but I have no idea how I could filter it by every interval on the second dataframe.
The steps I'm trying to do are:
1- Get all the intervals (start/end columns) from df_intervals;
2- Use those intervals to create a new dataframe (df_stats) containing the statistics of the columns within those time ranges. Example:
      start                  end             ID    X_max    X_min    X_mean    Y_max    Y_min    Y_mean    ....
2020-02-03 18:11:59   2020-02-03 18:42:00    01    ...    ...    ...     ...   ...    ...    ...     ...
2020-02-03 18:11:59   2020-02-03 18:42:00    02    ...    ...    ...     ...   ...    ...    ...     ...
2020-02-03 18:11:59   2020-02-03 18:42:00    03    ...    ...    ...     ...   ...    ...    ...     ...
2020-02-03 18:11:59   2020-02-03 18:42:00    04    ...    ...    ...     ...   ...    ...    ...     ...
2020-02-03 18:11:59   2020-02-03 18:42:00    05    ...    ...    ...     ...   ...    ...    ...     ...
2020-02-03 19:36:59   2020-02-03 20:06:59    01    ...    ...    ...     ...   ...    ...    ...     ...
2020-02-03 19:36:59   2020-02-03 20:06:59    02    ...    ...    ...     ...   ...    ...    ...     ...
2020-02-03 19:36:59   2020-02-03 20:06:59    03    ...    ...    ...     ...   ...    ...    ...     ...
 
     
    