In a dataset like this one (CSV format), where there are several columns with values, how can I use fillna alongside df.groupby("DateSent") to fill in all desired columns with min()/3 of the group?
In [5]: df.head()
Out[5]: 
  ID  DateAcquired  DateSent         data   value  measurement    values
0  1      20210518  20220110  6358.434713   556.0   317.869897  3.565781
1  1      20210719  20220210  6508.458382  1468.0   774.337509  5.565384
2  1      20210719  20220310  6508.466246     1.0    40.837533  1.278085
3  1      20200420  20220410  6507.664194    48.0    64.335047  1.604183
4  1      20210328  20220510  6508.451227     0.0    40.337486  1.270236
According to this other thread on SO, one way of doing it would be one by one:
df["data"]        = df.groupby("DateSent")["data"].transform(lambda x: x.fillna(x.min()/3))
df["value"]       = df.groupby("DateSent")["value"].transform(lambda x: x.fillna(x.min()/3))
df["measurement"] = df.groupby("DateSent")["measurement"].transform(lambda x: x.fillna(x.min()/3))
df["values"]      = df.groupby("DateSent")["values"].transform(lambda x: x.fillna(x.min()/3))
In my original dataset where I have 100000 such columns, I can technically loop over all desired column names. But is there a better/faster way of doing this? Perhaps something already implemented in pandas?
 
    