There is a function minpoly to compute the minimal polynomial of an algebraic expression:
In [71]: rt = S(1)/3 + (-S(7)/2 - 21*sqrt(3)*I/2)**(S(1)/3)/3 + (-S(7)/2 + 21*sqrt(3)*I/2)**(S(1)/3)/3
In [72]: rt
Out[72]: 
        _______________       _______________
       ╱   7   21⋅√3⋅ⅈ       ╱   7   21⋅√3⋅ⅈ 
    3 ╱  - ─ - ───────    3 ╱  - ─ + ─────── 
1   ╲╱     2      2       ╲╱     2      2    
─ + ─────────────────── + ───────────────────
3            3                     3         
In [73]: minpoly(rt)
Out[73]: 
 3    2          
x  - x  - 2⋅x + 1
That shows that this is a root of the polynomial that you showed. In general of r is a root of a polynomial p then minpoly(r) is a polynomial that divides p.
We can also use minpoly to prove that the expression after substituting the root into the polynomial is zero:
In [74]: p = x**3-x**2-2*x+1
In [75]: p.subs(x, rt)
Out[75]: 
                                                                           2                                                  3 
          _______________   ⎛        _______________       _______________⎞    ⎛        _______________       _______________⎞  
         ╱   7   21⋅√3⋅ⅈ    ⎜       ╱   7   21⋅√3⋅ⅈ       ╱   7   21⋅√3⋅ⅈ ⎟    ⎜       ╱   7   21⋅√3⋅ⅈ       ╱   7   21⋅√3⋅ⅈ ⎟  
    2⋅3 ╱  - ─ + ───────    ⎜    3 ╱  - ─ - ───────    3 ╱  - ─ + ─────── ⎟    ⎜    3 ╱  - ─ - ───────    3 ╱  - ─ + ─────── ⎟  
1     ╲╱     2      2       ⎜1   ╲╱     2      2       ╲╱     2      2    ⎟    ⎜1   ╲╱     2      2       ╲╱     2      2    ⎟  
─ - ───────────────────── - ⎜─ + ─────────────────── + ───────────────────⎟  + ⎜─ + ─────────────────── + ───────────────────⎟  
3             3             ⎝3            3                     3         ⎠    ⎝3            3                     3         ⎠  
                       
        _______________
       ╱   7   21⋅√3⋅ⅈ 
  2⋅3 ╱  - ─ - ─────── 
    ╲╱     2      2    
- ─────────────────────
            3          
In [76]: minpoly(p.subs(x, rt))
Out[76]: x
Here the minimal polynomial is x whose only root is zero.
https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory)
https://docs.sympy.org/latest/modules/polys/reference.html#sympy.polys.numberfields.minpoly